La diferencia de conjuntos (3)

Vamos a dar algunas propiedades más de la diferencia de conjuntos. En primer lugar, tenemos que si A,B y C son subconjuntos de X, entonces

(5) (A \cup B)- C = (A-C) \cup (B-C).

Para probar esta afirmación volvemos a usar la relación A-B = A \cap B', donde B' representa el complementario de B. Así pues,

(A \cup B)-C = (A \cup B) \cap C' = (A \cap C') \cup (B \cap C') =

(A-C) \cup (B-C).

Tenemos también que

(6) (A \cap B) -C =(A-C) \cap (B-C).

Para probar esto necesitamos algo más de inventiva. Así vemos que

(A \cap B)-C = (A \cap B) \cap C' = A \cap B \cap C' \cap C' =

(A \cap C') \cap (B \cap C') = (A-C) \cap (B-C).

Ahora consideremos familias de conjuntos: (A_i)_{i \in I}, (B_j)_{j \in J}. En particular,

(7) (\cup_{i \in I} A_i) - B= \cup_{i \in I} (A_i - B),

(8)  (\cap_{i \in I} A_i) - B =\cap_{i \in I} (A_i - B).

Vamos a probar la primera de estas igualdades

(\cup_{i \in I} A_i)-B = (\cup_{i \in I} A_i) \cap B' =

\cup_{i \in I} (A_i \cap B') = \cup_{i \in I} (A_i -B).

La demostración de (8) es análoga. Para terminar, planteamos las operaciones

(9) \cup_{i \in I} A_i - \cup_{j \in J} B_j

(10) \cap_{i \in I} A_i - \cap_{j \in J} B_j

y sugerimos al lector que las desarrolle a la luz de lo visto en estas entradas.

Anuncios

Diferencia de conjuntos (2)

Vamos a dar las demostraciones de una serie de interesantes propiedades de la diferencia de conjuntos.

(1). Sean A,B y C tres subconjuntos de X, entonces

(A-B)- C = A- (B \cup C) .

En efecto, si A' es el complementario de A, tenemos que

(A-B)-C = (A \cap B') \cap C' = A \cap (B' \cap C'),

y aplicando las leyes de De Morgan,

A \cap (B' \cap C') = A \cap (B \cup C)' = A -(B \cup C).

Sin embargo, es

(2) A-(B-C) = (A-B) \cup (A \cap C).

La demostración es análoga a la anterior. Más interesantes son las igualdades donde intervienen uniones e intersecciones de familias de subconjuntos de X. Así si (A_i)_{i \in I} es una familia de partes de X y A \subset X, entonces

(3) A - \cup_{i \in I} A_{i} = \cap_{i \in I} (A-A_i),

(4) A -\cap_{i \in I} A_i = \cup_{i \in I}(A-A_i).

En efecto, tenemos que

A- \cup_{i \in I} A_i = A \cap (\cup_{i \in I} A_i)' = A \cap ( \cap_{i \in I} A_i') =\cap_{i \in I} (A \cap A_i')= \cap_{i \in I} (A- A_i).

La demostración de (4) es análoga.

La diferencia de conjuntos (1)

Dados dos conjuntos A y B, su diferencia A-B o complemento relativo de A a B es el conjunto

\{ x \in A : x \notin B \}.

Al tratarse de un subconjunto de A, los axiomas de la teoría de conjuntos nos dicen que existe como tal y no necesitamos un marco más amplio para definirla. Sin embargo, en la mayoría de las ocasiones consideramos dos subconjuntos A y B de un conjunto dado X. En tal caso, la diferencia es un subconjunto de X y su definición es la misma

A-B = \{x \in X : x \in A, x \notin B \}.

Esta segunda interpretación es la que vamos a tomar para dar una serie de propiedades. En primer lugar,

A-A = \emptyset.

Propiedad de inmediata demostración. Por otro lado, en general

A-B \neq B-A.

Las propiedades más interesantes se dan cuando tenemos en cuenta la relación de la diferencia con otras operaciones de conjuntos como la unión, la intersección y el paso al complementario. Así tenemos que el complementario de A en relación a X es

A' = X -A,

y esto nos permite definir

A-B = A \cap B'.

Esta igualdad nos va a ser muy útil para las siguientes demostraciones.

Bases de Filtro (2)

Vamos a continuar con algunas propiedades de las bases de filtro. En primer lugar, veremos que se conservan a través de las aplicaciones.
Sean X e Y dos conjuntos no vacíos. Sea \mathcal{H} una base de filtro sobre X y sea f una aplicación de X en Y. Afirmamos que la clase
f(\mathcal{H}) = \{f(A) : A \in \mathcal{H} \}
es una base de filtro sobre Y.
En primer lugar, la clase \mathcal{H} es no vacía por lo que f(\mathcal{H}) será no vacía. Además como el vacío no pertenece a \mathcal{H}, se sigue que para todo A de \mathcal{H} es f(A) no vacío y, por tanto, la clase f(\mathcal{H}) no contiene al vacío. Sean U y V elementos de f(\mathcal{H}). Hallaremos A y B de \mathcal{H}, tales que U = f(A) y V = f(B). Además, como \mathcal{H} es una base de filtro, existe C en \mathcal{H}, no vacío, tal que C \subset A \cap B . El conjunto W = f(C) es no vacío, pertenece a f(\mathcal{H}) y verifica
W= f(C) \subset f(A \cap B) \subset f(A) \cap f(B) = U \cap V .
Esto termina la demostración.
Por otro lado, supongamos que X e Y son dos conjuntos no vacíos. y \mathcal{J} es una familia fundamental sobre Y y f una aplicación de X en Y. Si para todo B de \mathcal{J} es B \cap f(X) no vacío, entonces la clase de las imágenes inversas f^{-1}(\mathcal{J}) = \{ f^{-1} (B) : B \in \mathcal{J} \} es una familia fundamental sobre X. Veamos la prueba. Sean A_{1}, A_{2} dos elementos de f^{-1}(\mathcal{J}). Hallaremos dos conjuntos B_{1}, B_{2} \in \mathcal{J}, tales que A_{1}= f^{-1}(B_{1}),A_{2}= f^{-1}(B_{2}). Entonces

A_{1} \cap A_{2} = f^{-1}(B_{1}) \cap f^{-1}(B_{2}) = f^{-1} (B_{1} \cap B_{2}).

Pero como \mathcal{J} es una familia fundamental, sabemos que existe B_{3} \in \mathcal{J} con B_{3} \subset B_{1} \cap B_{2}, por lo que

f^{-1} (B_3) \subset f^{-1}(B_1 \cap B_2) = A_1 \cap A_2
Si la intersección A_{1} \cap A_{2} fuera vacía, entonces como B_{1} \cap B_{2} \cap f(X) \neq \emptyset, concluiríamos que la intersección B_{1} \cap B_{2} es vacía pues en otro caso su imagen inversa no sería vacía. Así pues, B_{3} = \emptyset y f^{-1} (B_{3}) = \emptyset. Para acabar, si la intersección A_{1} \cap A_{2} no fuera vacía, entonces el conjunto B_{1} \cap B_{2} es no vacío y también son  B_{3} y A_{3} = f^{-1} (B_{3}) no vacíos.

En el teorema anterior, la condición de corte de todo B \in \mathcal{J} con el recorrido de la aplicación f: X \rightarrow Y es esencial. En efecto, podemos asegurar en esas circunstancias que el vacío se obtiene sólo como imagen inversa del vacío.

Estructura de los anillos de Boole generados por una clase no vacía

Supongamos que \mathcal{M} es una clase no vacía de partes de un conjunto X. Denotamos por \mathcal{R}(\mathcal{M}) al anillo de Boole generado por dicha clase. Sabemos que dicho anillo siempre existe y es el mínimo en sentido inclusivo que contiene a la clase \mathcal{M}, pero ¿podemos dar alguna caracterización de cómo se forma? En principio, si la clase \mathcal{M} es un semianillo, sabemos que \mathcal{R}(\mathcal{M}) es el conjunto de las uniones finitas disjuntas de elementos de  \mathcal{M} pero me temo que en el caso general no hay una forma clara de obtenerlo. El siguiente resultado esboza una forma que admito que no es muy práctica pero puede ser útil para algunos casos.

Sea la clase no vacía  \mathcal{M}. Llamaremos H_0 a dicha clase y supondremos que \emptyset \in H_0.  La clase H_1 es el conjunto de las uniones finitas de diferencias de elementos de H_0, la clase H_2 es el conjunto de las uniones finitas de diferencias de elementos de H_1 y así sucesivamente. Obtenemos pues una sucesión recurrente H_n de clases. Como H_0 es no vacía. Dado A \in H_0 es A-\emptyset = A un elemento de H_1. Análogamente, si B es un elemento de H_1, entonces B-\emptyset = B \in H_2 y así H_0 \subset H_1 \subset H_2. En general,

H_0 \subset H_1 \subset H_2 \subset \ldots \subset H_n \subset H_{n+1} \subset \ldots .

Probaremos que la unión

S = \cup_{n=0}^{\infty} H_n

es el anillo generado por \mathcal{M}. En primer lugar, es claro que

\mathcal{M} \subset \cup_{n=0}^{\infty} H_n \subset \mathcal{R} (\mathcal{M}),

pues por definición H_0 = \mathcal{M} y además todo anillo es cerrado para la unión finita y la diferencia de sus elementos. En segundo lugar, si C y D son elementos de S, hallaremos que pertenecen a ciertos H_j y H_k de la sucesión creciente. Por tanto, si r = \max \{j,k \} , ambos pertenecerán a H_{ r }. En consecuencia,

C-D \in H_{r+1} \subset S,

C \cup D = (C- \emptyset) \cup (D- \emptyset) \in H_{r+1} \subset S.

Esto prueba que S es cerrado para la diferencia y la unión finita y, por tanto, es un anillo. Así pues

\mathcal{R}(\mathcal{M}) \subset S

y esta inclusión junto con la anterior nos muestra que

\mathcal{R}(\mathcal{M}) = S.

Sobre semianillos de conjuntos y operaciones finitas

Una clase o familia de partes de un conjunto X es un semianillo si contiene al vacío, es cerrada para la intersección finita y la diferencia de dos de sus elementos se puede expresar como unión finita disjunta de elementos de la misma clase. Un ejemplo de semianillo muy utilizado es el de la clase de los intervalos de la recta real de la forma

]a,b],

donde a y b son números reales con a \leq b. Otro ejemplo de semianillo es el de los intervalos

[a,b[

y también es un semianillo la clase de todos los intervalos (abiertos, cerrados, semiabiertos, vacíos, acotados, no acotados, etc.). Sin embargo, la clase

\mathcal{C} = \{ [a,b] : a \leq b \} \cup \emptyset

no es un semianillo. Basta ver que si a < c <b < d, entonces

[a,b]-[c,d] = [a,c[

y [a,c[ no puede expresarse como unión finita y disjunta de intervalos cerrados. Sin embargo, sí puede expresarse como unión numerable de intervalos cerrados aunque no disjunta. Basta observar que

\cup_{n=1}^{\infty} [a, c-\frac{1}{n}] = [a,c[.

Yendo un paso más allá podríamos preguntarnos si es posible encontrar una sucesión disjunta de intervalos cerrados cuya unión fuera el intervalo [a,c[.

Interesante equicardinalidad de conjuntos de funciones

Sean tres conjuntos A, B y C. Supongamos que los conjuntos A y B son equinumerosos (tienen el mismo cardinal). Sean

A^{C} = \{ f: C \rightarrow A \},

B^{C} = \{g: C \rightarrow B \},

los conjuntos de las funciones f de C en A y de las funciones g de C en B, respectivamente. Probaremos que A^{C} y B^{C} tienen el mismo cardinal. Para ello vamos a utilizar la biyección

f: A \rightarrow B

que, por hipótesis, existe entre A y B. Con ella, definimos la aplicación

\lambda : A^{C} \rightarrow B^{C},

dada por \lambda (h) = f \circ h. Esta aplicación está bien definida (ver imagen)

Imagen

pues a cada aplicación de C en A le hacemos corresponder una aplicación de C en B. Probaremos que \lambda es una biyección. El método que vamos a emplear es definir otra aplicación \mu que resulta ser inversa de \lambda. Sea pues

\mu : B^{C} \rightarrow A^{C}

dada por \mu (j) = f^{-1} \circ j.  Es fácil ver que está bien definida (ver imagen)

Imagen

Sólo nos resta ver las relaciones siguientes:

(\mu \circ \lambda)( h) = \mu (\lambda (h) ) = \mu (f \circ h) = f^{-1} \circ f \circ h =h,

(\lambda \circ \mu) (j) = \lambda (\mu (j )) = \lambda (f^{-1} \circ j) = f \circ f^{-1} \circ j = j.

En efecto, tales relaciones muestran que \lambda y \mu son inversas una de la otra por lo que son biyecciones y concluimos que el cardinal de A^{C} es igual al cardinal de B^{C}.