Archivo de la etiqueta: espacio vectorial

Un ejercicio más de E.V.

Captura de pantalla de 2015-11-28 10-54-26

Recordemos que si E y F son dos subespacios vectoriales de V, entonces el conjunto

E+F = \{ u+v: u \in E, v \in F \}

es un subespacio de V y además el más pequeño entre aquellos que incluyen a ambos. Es decir,
E \cup F \subset E+F \subset H,
para todo H subespacio de V que incluye a E y a F. En el caso de que E \cap F = \{0 \} y sólo en ese caso diremos que la suma E+F es directa y escribimos E \bigoplus F.  Por otro lado, la notación

L(S)

hace referencia a la envoltura lineal del conjunto S. Esto es, al subespacio vectorial formado por las combinaciones lineales de los elementos de S o lo que es lo mismo, al menor subespacio vectorial que incluye a S.

(a) Sean S_1 y S_2 dos subconjuntos finitos de vectores de V, linealmente independientes. Por ejemplo, si suponemos que V = \mathbb{R}^2, y definimos

S_1= \{(0,1)\}, S_2 = \{(0,1),(1,1) \}.

Tenemos que

L(S_1) = \{(0.x) : x \in \mathbb{R} \}, \quad L(S_2) = \mathbb{R}^2 ,

por lo que L(S_1) \cap L(S_2) = L(S_1) y la suma L(S_1)+L(S_2) no es directa.

(b) Si L(S_1) \bigoplus L(S_2), entonces L(S_1) \cap L(S_2) = \{0\} o lo que es lo mismo, cada vector de L(S_1) + L(S_2) se puede escribir de una sola forma como suma de un vector de L(S_1) y otro de L(S_2). En particular, si formamos la combinación lineal

\lambda_1 u_1 + \lambda_n u_n+ \mu_1 v_1+ \ldots + \mu_m v_m =0,

tenemos que

\lambda_1 u_1 + \ldots + \lambda_n v_n = -\mu_1 v_1 - \ldots - \mu_m v_m.

Es decir, tenemos un vector que pertenece a la intersección L(S_1) \cap L(S_2) por lo que será nulo. Es decir,

\lambda_1 u_1 + \ldots + \lambda_n v_n = 0,

-\mu_1 v_1 - \ldots - \mu_m v_m = 0.

Pero esto no garantiza que todos los escalares sean nulos. Sólo será posible si tanto S_1 como S_2 son linealmente independientes. Así que la afirmación (b) es falsa.

(c) Por nuestras explicaciones iniciales podemos afirmar que

L(S_1) \cup L(S_2) \subset L(S_1)+L(S_2).

Como S_1 \subset L(S_1) y S_2 \subset L(S_2) concluimos que

S_1 \cup S_2 \subset L(S_1) \cup L(S_2) \subset L(S_1)+L(S_2).

En consecuencia,

L(S_1 \cup S_2) \subset L(S_1)+ L(S_2).

Por otro lado, si z es un vector L(S_1)+L(S_2), hallaremos

u = \sum_{i=1}^{n} \lambda_i u_i, \quad v= \sum_{j=1}^{m} \mu_{j} v_j,

tales que

z = u+v = \sum_{i=1}^{n} \lambda_i u_i+\sum_{j=1}^{m} \mu_{j} v_j,

luego z \in L(S_1 \cup S_2). Esto prueba que L(S_1) + L(S_2) \subset L(S_1 \cup S_2) y la doble inclusión nos lleva a la igualdad

L(S_1 \cup S_2) =L(S_1)+ L(S_2).

Anuncios

Solución ejercicio espacio vectorial

Respondiendo al correo de consultas de hoy, voy a resolver el siguiente ejercicio:

Captura de pantalla de 2015-11-25 19-29-53

En primer lugar, debemos recordar que una base de Hamel (o base algebraica) de un espacio vectorial es una familia de vectores de dicho espacio que es linealmente independiente y que genera dicho espacio.  El cardinal de la familia de vectores de cualquier base es siempre el mismo y se llama dimensión del espacio vectorial. En el caso de que el cardinal sea finito diremos que el espacio vectorial es de dimensión finita y entonces podemos dar una serie de resultados más sencillos de entender y manejar:

  1. En un espacio vectorial V de dimensión n, todo sistema linealmente independiente tiene como máximo n vectores.
  2. En un espacio vectorial V de dimensión n, todo sistema linealmente independiente con n vectores es una base.

En nuestro problema vamos a utilizar el segundo resultado. En efecto, si B=(v_1, \ldots, v_n) es una base de V, entonces la dimensión de V es n y bastará probar que (u_1, u_2, \ldots, u_n) es una familia de vectores linealmente independientes para concluir que son una base de V. ¿Cómo hacemos esto? Pues planteando la combinación lineal trivial
\sum_{j=1}^{n} \lambda_i u_i =0.
En nuestro caso,
\sum_{j=1}^{n} \lambda_i (\sum_{i=1}^{j} v_i).
Esto parece muy difícil en notación de sumatorios pero en realidad es
\lambda_1 v_1 + \lambda_2 (v_1+v_2) + \ldots + \lambda_n (v_1+ \ldots v_n) =
(\lambda_1+ \ldots + \lambda_n)v_1 + \lambda_2 (v_2+ \ldots + v_n)+ \ldots + \lambda_n v_n =0.
Como v_1, v_2, \ldots, v_n son linealmente independientes (recordemos que son una base), entonces
\lambda_n =0,
\lambda_{n-1}+ \lambda_n = 0,
\ldots ,
\lambda_1 + \lambda_2 + \ldots + \lambda _n = 0.
Es decir, obtenemos un sistema homogéneo cuya única solución es
\lambda_1 = \lambda_2 = \ldots = \lambda_n =0.
Esto prueba que B' =(u_1, u_2, \ldots, u_n) es linealmente independiente y por ello, aplicando el resultado 2, es una base.

Curso EVT. Lectura 17. Aplicaciones Lineales (2)

Vamos a continuar con el tema de las aplicaciones lineales. Probaremos que “conservan” los subespacios.

Teorema 1. Sea f una aplicación lineal entre los K-espacios E y F y sean S un subespacio de E y T un subespacio de F. Afirmamos que f(S) es un subespacio de F y f^{-1}(T) es un subespacio de E.

Prueba. Si S es un subespacio de E, entonces es no vacío y su imagen f(S) es un subconjunto no vacío de F. Sean u,v elementos de f(S). Hallaremos x e y de S tales que f(x)=u, f(y) =v. Por tanto, para cualesquiera \lambda, \mu escalares, tenemos que \lambda x + \mu y pertenece a S y f(\lambda x + \mu y) = \lambda f(x) + \mu f(y) = \lambda u + \mu v pertenece a f(S). Esto prueba que f(S) es un subespacio de F. Análogamente, si T es un subespacio de F, resulta que 0 \in T por lo que de la igualdad f(0) = 0 se sigue que 0 \in f^{-1}(T) y f^{-1}(T) es un subconjunto no vacío de E. Dados x,y \in f^{-1}(T), se sigue que f(x), f(y) \in T por lo que para cualesquiera \lambda, \mu escalares, tenemos que \lambda f(x)+ \mu f(y) = f(\lambda x + \mu y) pertenece a T, luego \lambda x + \mu y \in f^{-1}(T). Esto prueba que f^{-1}(T) es un subespacio de E.

Teorema 2. Una aplicación lineal f:E \rightarrow F es inyectiva si y sólo si su núcleo tiene al cero como único elemento

Prueba. Sabemos que f(0)= 0 para toda aplicación lineal. Por tanto, si f es inyectiva y x \neq 0, concluiremos que f(x) \neq 0 y de aquí Ker (f) = \{0 \}. Recíprocamente, supongamos que el núcleo de f sólo tiene al vector 0 como elemento y sean x,y de E tales que f(x) = f(y). Entonces basta observar que

f(x)-f(y) = f(x)+(-1)f(y) = f(x) +f((-1)y) =f(x)+f(-y) = f(x-y) = 0

para concluir que x = y. Así pues, f es inyectiva y termina nuestra demostración

Teorema 3. Una aplicación lineal f:E \rightarrow F es sobreyectiva si y sólo si Im (f) = F.

Prueba. La prueba es inmediata.

También es fácil probar que si una aplicación f.E \rightarrow F es lineal y biyectiva, entonces también es lineal y biyectiva su inversa f^{-1} :F \rightarrow E. Más interés tiene el siguiente teorema pues nos llevará al resultado más interesante de esta lectura.

Teorema 4. Sean E y F espacios vectoriales sobre el mismo cuerpo K y sea B=(x_{i})_{i \in I} una base de E. Podemos definir una aplicación lineal f de E en F de la siguiente manera: para cada i \in I, definimos f(x_{i}) como un elemento cualquiera de F y extendemos esta asignación a cada x de E mediante
f(x)=0, si x=0,
f(\sum_{j \in J} \lambda_{j} x_{j}) = \sum_{j \in J} \lambda_{j} f(x_{j}), si x \neq 0.
Donde J una subfamilia finita de elementos de B que da lugar a x mediante su combinación lineal con coeficientes (\lambda_{j})_{j \in J} no nulos.

Prueba. En primer lugar, la aplicación f está bien definida ya que la expresión de cada vector no nulo de E como combinación lineal, con escalares no nulos, de elementos de B es única. Supongamos que los vectores x o y o ambos sean nulos, entonces se comprueba de forma inmediata que para cualesquiera \lambda, \mu escalares, se tiene que f(\lambda x + \mu y) = \lambda f(x)+ \mu f(y). Sean x= \sum_{j \in J} \lambda_{j} x_{j} e y= \sum_{k \in K} \delta_{k} x_{k}, dos vectores de E expresados como combinación lineal de elementos de la base $ñatex B$ y sean \lambda_{j} \neq 0 y \delta_{k} \neq 0, para todo j \in J y todo k \in K, respectivamente. Entonces para cualesquiera escalares \lambda, \mu podemos escribir

\lambda x+ \mu y = \lambda \sum_{j \in J} \lambda_{j} x_{j} + \mu \sum_{k \in K} \delta_{k} x_{k} = \sum_{j \in J} (\lambda \lambda_{j}) x_{j}+ \sum_{k \in K} (\mu \delta_{k}) x_{k} = \sum_{r \in R} \theta _{r} x_{r},

donde R = J \cup K y \theta_{r} =\lambda \lambda_{r} si r \in J-K, \theta_{r} = \lambda \lambda_{r} + \mu \delta_{r} si r \in J \cap K y \theta_{r} = \mu \delta_{r} si r \in K-J. Por tanto, tenemos que

f( \lambda x + \mu y) = f \big( \sum_{r \in R} \theta _{r} x_{r} \big) = \sum_{r \in R} \theta _{r} f(x_{r})= \sum_{r \in J-K}(\lambda \lambda_{r}) f(x_{r}) + \sum _{r \in J \cap K} (\lambda \lambda_{r} + \mu_{r} \delta_{r}) f(x_{r})+ \sum_{r \in K-J} (\mu_{r} \delta_{r}) f(x_{r})= \sum_{j \in J} (\lambda \lambda_{j}) f(x_{j}) + \sum_{k \in K} (\mu \delta_{k}) f(x_{k}) = \lambda \big(\sum_{j \in J} \lambda_{j} f(x_{j}) \big) + \mu \big(\sum_{k \in K} \delta_{k} f(x_{k}) \big) = \lambda f(x) + \mu f(y).

Esto prueba que f es lineal.

Ahora llegamos al resultado central.

Teorema 5. Dos espacios vectoriales sobre un mismo cuerpo son isomorfos si y sólo si tienen la misma dimensión.

Prueba. Supongamos que los K-espacios E y F son isomorfos. Entonces existe una biyección lineal f:E \rightarrow F. Si E = \{0 \}, entonces F = f(E) = f(0) = \{0 \} y, en consecuencia, dim (E) = dim (F) =0. Sea E un espacio vectorial no trivial y sea B una base de Hamel de E. Probaremos que C = f(B) es una base de Hamel de F. En efecto, sea (y_{j})_{j \in J} una familia finita de elementos de C y supongamos que \sum_{j \in J} \lambda_{j} y_{j} = 0. Entonces para cada j \in J el vector x_{j} = f^{-1}(y_{j}) es un elemento de B y podemos escribir f(\sum_{j \in J} \lambda_{j} x_{j}) = \sum_{j \in J} \lambda_{j} f(x_{j}) = \sum_{j \in J} \lambda_{j} y_{j} = 0 . Como f es biyectiva esto significa que \sum_{j \in J} \lambda_{j} x_{j} = 0 y como (x_{j})_{j \in J} es una subfamilia finita de B, esto implica que \lambda_{j} = 0 para todo j \in J. Hemos probado pues que C es linealmente independiente. Por otro lado, si z es un elemento cualquiera de F, tenemos que existe un x de E que verifica f(x) = z. Para dicho x podemos hallar una subfamilia finita (u_{k})_{k \in K} de elementos de B, tal que x = \sum_{k \in K} \mu_{k} u_{k} y esto significa que z=f(x) = \sum_{k \in K} \mu_{k} f(u_{k}). Evidentemente (f(u_{k}))_{k \in K} es una subfamilia finita de C y de aquí que C sea un sistema generador de F. Como C=f(B) es una base y f es una biyección, concluimos que dim (E) = |B| = |f(B)|= |C| = dim (F).
Supongamos ahora que dim(E) = dim(F). Si ambas dimensiones son nulas, basta tomar la aplicación f:E \rightarrow F definida por f(0) = 0 para conseguir una biyección lineal (el lector puede comprobar este extremo fácilmente). Sea dim(E) = dim (F) >0. Si B= (x_{i})_{i \in I} es una base de E y C= (y_{i})_{i \in I} es una base de F tenemos que la asignación f(x_{i}) = y_{i}, para cada i \in I, da lugar a una aplicación lineal de E en F (ver teorema 4) mediante: f(x) =0 si x=0 y f(\sum_{j \in J} \lambda_{j} x_{j}) = \sum_{j \in J} \lambda_{j} y_{j}, si x \neq 0, donde J una subfamilia finita de elementos de B que genera x mediante su combinación lineal con coeficientes (\lambda_{j})_{j \in J} no nulos. Claramente f es inyectiva ya que Ker(f) = \{0 \} y también es sobreyectiva pues Im (f) = F. En consecuencia E y F son isomorfos.

Para acabar, exponemos un resultado conocido del álgebra lineal básica pero que a la luz de lo expuesto es válido para cualquier espacio vectorial ya sea de dimensión finita o infinita.

Teorema 6.Sea f:E \rightarrow F una aplicación lineal. Afirmamos que si G es un subespacio de E suplementario de Ker(f), entonces G es isomorfo a Im(f).

Prueba. Sea Ker(f) el núcleo de f y sea G su suplementario. Vamos a restringir la aplicación f a G. Dicha restricción es inyectiva ya que si u y v son elementos de G y resulta que f(u)=f(v), entonces f(u)-f(v) = 0, de donde f(u-v) = 0 y u-v \in Ker(f) \cap G. Luego u-v= 0 y u=v. Es claro que la imagen de la restricción de f a G está incluida en Im(f) pero por otro lado, si y es un elemento de Im(f), hallaremos un x \in E tal que f(x)=y. Ahora bien, como x =z+u, con z \in Ker(f) y u \in G, concluimos que y=f(x)=f(z+u) = f(z)+f(u) = 0+f(u)=f(u). Esto prueba que Im(f) está incluida en la imagen de la restricción de f a G y así ambas coinciden. La conclusión final es que f:G \rightarrow Im(f) es una biyección por lo que G es isomorfo a Im(f).

Corolario 1.f: E \rightarrow F una aplicación lineal. Entonces dim(Ker(f))+dim(Im(f)) = dim(E)

Prueba. Si G es suplementario de Ker (f), el corolario 2 de la lectura 14 permite afirmar que dim(E) = dim((Ker(f))+dim(G) y el teorema 6 nos lleva a la igualdad buscada: dim(E) = dim(Ker(f))+dim(Im(f)).

Curso EVT. Lectura 11. Subespacios (1)

Sea E un espacio vectorial sobre un cuerpo K. Decimos que un subconjunto F  de E, no vacío, es un subespacio de E si y sólo si la restricción de las operaciones de suma de vectores y producto por escalares al conjunto F hace de éste un espacio vectorial sobre K.

Teorema 1: Sea F un subconjunto no vacío del espacio vectorial E. Son equivalentes:a) F es un subespacio de E.

b) Para todos x,y \in F y todo \lambda \in K son x+y, \lambda x elementos de F.

c) El subconjunto F contiene a todas las combinaciones lineales finitas de sus elementos.

d) Para todos \lambda, \mu de K y para todos x,y de F es \lambda x+ \mu y un elemento de F.

Prueba: a) implica b). Como F es un subespacio de E, tenemos que es cerrado para las restricciones de las operaciones de suma de vectores y producto de escalares por vectores. En consecuencia, si x,y \in F y \lambda \in K, se sigue que x+y, \lambda x son elementos de F.

b) implica c). Haremos la prueba por inducción. Así si (x_i)_{i=1}^{n}, con n \geq 1 es una familia finita de elementos de F, resulta por (b) que \lambda_{1} x_{1} \in F y si para r \geq 1 fuera \sum_{i=1}^{r} \lambda_{i} x_{i} \in F, entonces

\sum_{i=1}^{r+1} \lambda_{i} x_{i} = \lambda_{r+1} x_{r+1} + \sum_{i=1}^{r} \lambda_{i} x_{i}.

Pero al ser \lambda_{r+1} x_{r+1} y \sum_{i=1}^{r} \lambda_{i} x_{i} elementos de F, su suma es un elemento de F.

c) implica d). Es inmediato.

d) implica a).  Sean x,y elementos de F y sean \lambda=1, \mu=-1, entonces \lambda x + \mu y = x-y es un elemento de F y F es un subgrupo de E. Si ahora hacemos \mu =0 es $\lambda x$ un elemento de F y el producto de escalares por vectores es cerrado cumpliéndose de forma inmediata las propiedades de este. En definitiva, F es un espacio vectorial sobre K con las restricciones de la suma de vectores y el producto de escalares por vectores.

Utilizando el teorema anterior podemos ver que

1. El cero es un elemento de todo subespacio de F.

2. La intersección de subespacios es un subespacio.

En efecto. Si F es un subespacio entonces es no vacío y tomando x \in F y \lambda =0 es \lambda x = 0x= 0 un elemento de F. Si (F_i)_{i \in I} es una familia de subespacios de E, entonces su intersección es no vacía pues el cero pertenece a todos ellos. Además si x,y \in \cap_{i \in I} F_i y \lambda, \mu \in K, se sigue que x,y \in F_i para todo i \in I, de donde \lambda x+ \mu y \in F_i, para todo i \in I y la intersección es un subespacio por (d) del teorema anterior.

En todo espacio vectorial no trivial hay al menos dos subespacios: el propio espacio y el subconjunto \{0\}. Por ello podemos dar la siguiente

Definición: Sea E un K-espacio vectorial y sea A un subconjunto no vacío de E. La clase de los subespacios que incluyen a A se denota por \mathcal{L}(A).

Esta clase es no vacía pues E \in \mathcal{A}. Además la intersección de todos los elementos de \mathcal{A} será un subespacio, pero no cualquier subespacio es un subespacio muy especial.

Teorema 2: Sea E un K-espacio vectorial y sea A un subconjunto no vacío de E. La intersección de todos los subespacios que incluyen a A es la envoltura lineal de A. En símbolos: \cap_{F \in \mathcal{L}(A)} F = L(A).

Prueba: Sea \mathcal{L}(A) = \{H_i : i \in I \} la familia de todos los subespacios de E que incluyen a A. Sea C su intersección. Evidentemente, C es no vacío pues contiene a A y además es un subespacio como ya hemos probado. Si x depende linealmente de A, entonces x es combinación lineal de elementos de A y por ende de elementos de C por lo que pertenece a C al ser este un subespacio (Ver teorema 1). Por tanto, si denotamos L(A) a la envoltura lineal de A es

L(A) \subset C.

Recíprocamente, probaremos que L(A) es un subespacio vectorial de E. En efecto, sean x,y elementos de L(A). Hallaremos familias finitas (x_i)_i, (y_j)_j de elementos de A tales que x = \sum_{i} a_i x_i, y= \sum_{j} b_j y_j. En consecuencia, si \lambda \in K, podemos escribir

x+y = \sum_{i,j}( a_i x_i+b_j y_j), \lambda x = \lambda \sum_{i} a_i x_i = \sum_{i} (\lambda a_i) x_i.

Pero esto significa que x+y \in L(A) y \lambda x \in L(A), por lo que L(A) es un subespacio. Evidentemente, de A \subset L(A) se sigue que L(A) \in \mathcal{L}(A) y, en consecuencia

C = \cap_{i \in I} H_i \subset L(A).

Esto termina la demostración. El siguiente resultado es consecuencia inmediata del teorema 2.

Corolario: Un subconjunto A no vacío es un subespacio si y sólo si coincide con su envoltura lineal.

 

Curso EVT. Lectura 5. Las nociones de base y dimensión (1)

Uno de los conceptos más importantes del álgebra lineal es el de dimensión, el cual va ligado directamente con la idea de base. Para fundamentar estas nociones vamos a seguir dando resultados lo más generales posibles que nos llevarán de manera natural a estas ideas centrales.

(1) Consideremos un K-espacio vectorial E y sea A un subconjunto de E con al menos dos elementos. Son equivalentes:

a) El conjunto A es linealmente independiente.

b) Cada vector x, no nulo, de la envoltura lineal de A se expresa de forma única como combinación lineal, con coeficientes no nulos, de elementos de A.

c) Ningún x \in A depende linealmente de A- \{x \}.

La demostración de (1) la podéis ver aquí. Ahora definimos el concepto de base (base de Hamel).

Definición: Un subconjunto B de un K-espacio vectorial E es una base de Hamel o base algebrica de E si es linealmente independiente y su envoltura lineal coincide con E.

Utilizaremos los resultados de (1) para obtener condiciones equivalentes a la definición de base. Así tenemos que

(2) Si E es un espacio vectorial no trivial sobre un cuerpo K, son equivalentes:

(i) El subconjunto B de E es una base de Hamel de E.

(ii) Todo vector x \in E, no nulo, se expresa de forma única como combinación lineal de elementos de B con coeficientes no nulos.

(iii) El subconjunto B es minimal respecto a la propiedad de generar E.

(iv) El subconjunto B es maximal respecto a la propiedad de ser linealmente independiente.

Demostración. (i) implica (ii). Si B es una base entonces, por definición, es un conjunto linealmente independiente y su envoltura lineal es E. Si B = \emptyset, entonces E = L(B) = \{0 \} (recordemos que el cero es el único vector de la envoltura lineal del vacío). Pero esto no es posible pues hemos supuesto que el espacio E es no trivial. De esta manera, B es no vacío. Si constara de un sólo elemento éste no sería el cero (pues B es linealmente independiente). Así pues, existe x \in E con x \neq 0 y B = \{x \}. Sea y un elemento no nulo de E y supongamos que existen escalares \lambda, \mu, tales que y= \lambda x = \mu x. Entonces, (\lambda- \mu)x = 0 y de aquí \lambda = \mu. Esto prueba que la expresión de cada vector no nulo de E como combinación de elementos de B es única. Si B tiene más de dos elementos,  como B es linealmente independiente, aplicamos (1) y concluimos el mismo hecho.

(ii) implica (iii).  Sean B un subconjunto de E tal que L(B)=E y C un subconjunto de B tal que L(C) =E. Si existe x \in B, no nulo, tal que x \notin C, trivialmente es x = 1x y también x = \sum_{j \in J} \lambda_{j} x_{j}, donde (x_{j})_{j \in J} es una subfamilia finita de elementos de C y \lambda_{j} \neq 0 para todo j \in J. Estas dos representaciones, utilizando elementos de B, son diferentes por lo que obtenemos una contradicción. Para evitarla, nuestra hipótesis de que existe un elemento de B que no está en C ha de ser falsa y B=C. Esto prueba que B es minimal con respecto a la propiedad de generar E.

(iii) implica (iv). Supongamos que el conjunto B cumple L(B)=E y que B es minimal respecto a esta propiedad. Si B constara de un sólo elemento y fuera linealmente dependiente, entonces dicho elemento sería el cero y B no podría generar un espacio no trivial. Por tanto, esta posibilidad se descarta. Es decir, si B fuera linealmente dependiente constaría de dos elementos o más y entonces, en virtud de (1) hallaríamos un x \in B tal que x depende linealmente de B- \{x \}. Ahora bien, esto significaría que L(B)= L(B-\{x\}) y B dejaría de ser minimal respecto a la propiedad de generar E. En consecuencia, B es linealmente independiente. Una vez probado este punto veremos que es maximal respecto la propiedad de independencia lineal.
En efecto, sea C un subconjunto linealmente independiente de E tal que B \subset C y supongamos que existe x \in C tal que x \notin B. Como L(B)=E se tiene que

x = \sum_{i \in J} \lambda_j x_j,

donde J es finito y x_{j} \in B, \lambda_{j} \in K, para todo j \in J. Por tanto, se da la igualdad

x-\sum_{i \in J} \lambda_j x_j = 0,

la cual es una combinación lineal no trivial de una familia finita de elementos de C. En consecuencia, C ha de ser linealmente dependiente y obtenemos una contradicción lo que nos lleva a que nuestra hipótesis de que existe x \in C tal que x \notin B es falsa y B=C. Esto prueba que B es maximal con respecto a la independencia lineal

(iv) implica (i). Si fuera L(B) \neq E, hallaríamos x \in E tal que x no depende linealmente de B. Por tanto, por (1), C= B \cup \{x \} sería un subconjunto linealmente independiente de E que incluye a B y es distinto de B. Esto contradice el carácter maximal como independiente de B por lo que nuestra suposición es falsa y es L(B)=E.

Para el lector interesado, daré una serie de notas aclaratorias sobre algunos puntos de estos desarrollos.

Curso EVT. Lectura 2. Primeras propiedades de un espacio vectorial

Una vez establecida la estructura de espacio vectorial sobre un cuerpo conmutativo vamos a dar una serie de propiedades que se deducen directamente de la definición.
Teorema 1. Sea E un espacio vectorial sobre un cuerpo K, entonces
a) Para todo x \in E, es 0 x = 0.
b) Para todo \lambda \in K es \lambda 0 = 0.
c) Dados \lambda \in K y x \in E, si \lambda x = 0, entonces \lambda = 0 o x = 0, o ambos son nulos.
d) Para todo \lambda \in K y x \in E, se cumple que (-\lambda) x = \lambda (-x) = - \lambda x.
e) Para todo \lambda \in K y x \in E, es (-\lambda)(-x) = \lambda x.

Obsérvese que en el símbolo cero se emplea indistintamente para el cero del grupo E y para el cero del cuerpo K.

Es importante señalar que en el caso de los módulos, la propiedad c no se cumple.

Ejercicios propuestos.

Soluciones ejercicios: ejercicio 1, ejercicio 2.