Problemas, Varios

Segundo problema de Gravitación resuelto

Resolvemos un segundo problema de Bachillerato sobre Gravitación. En este caso calculamos el peso de una persona en Júpiter que en la Tierra pese 80 kg.

gravedad

Anuncios
Varios

Un problemilla

Un único virus proveniente del espacio exterior ha llegado a la Tierra en el interior de un meteorito. Su particular química hace que para reproducirse necesite infectar al menos a dos bacterias terrestres y que una vez infectadas éstas, si no mueren en un período de dos minutos, dan lugar a 8 virus extraterrestres que siguen la misma pauta de comportamiento tanto temporal como de infección. Tras las dos primeras infecciones, la plaga se propaga mediante la expresión v_{n+2} = 3v_{n+1} -v_{n}, siendo v_{n} el número de virus extraterrestres en un momento dado y v_{n+1} y v_{n+2} el número de virus a los dos minutos y a los cuatro minutos después de dicho momento, respectivamente. Si suponemos que las dieciocho bacterias infectadas no mueren, ¿cuántos virus extraterrestres existen el cabo de dos horas y media?

Consultorio, Varios

Consulta binomio de Newton

Pregunta:  El siguiente binomio

(\frac{x^{n-7}}{y^{n+2}}+\frac{y^{2n-3}}{x^{3n-11}})^{n+10}

posee 16 términos. Hallar el termino onceavo de su desarrollo.

Respuesta: El binomio de Newton adopta la forma

(a+b)^m = \sum_{i=0}^{m} \binom{m}{i} a^{m-i} b^{i}

Veamos cómo quedaría al aplicarse a la expresión dada

(\frac{x^{n-7}}{y^{n+2}}+ \frac{y^{2n-3}}{x^{3n-11}})^{n+10}=

\sum_{i=0}^{n+10} \binom{n+10}{i} (\frac{x^{n-7}}{y^{n+2}})^{n+10-i} (\frac{y^{2n-3}}{x^{3n-11}})^{i} .

Ahora bien, suponemos que hay dieciséis términos en este desarrollo y que todos ellos son relevantes. Esto es, que no es posible simplificarlos a partir del desarrollo inicial. En ese caso, tenemos que (n+10)+1 = 16, de donde n=5  y, entonces, el término decimoprimero se obtiene haciendo i=10:

\binom{15}{10} (\frac{x^{-2}}{y^{7}})^{5} (\frac{y^{7}}{x^{4}})^{10}

Sólo restaría simplificar para obtener

\binom{15}{10} x^{-50} y^{35}.

 

Consultorio, Varios

Consulta sobre geometría

Estas son algunas respuestas para Karen Álvarez.

Pregunta 1: Los puntos A =(3,-2) y B=(3,6) son dos de los vértices de un cuadrado. Halla dos pares de puntos que puedan ser los otros dos vértices.

Respuesta:  Es fácil ver que los dos vértices que conocemos se hallan en el mismo lado pues comparten una coordenada (en este caso x=3). Esto nos permite hallar la longitud L  del lado del cuadrado mediante una simple operación:

L = \sqrt{(3-3)^2 + (6-(-2))^2} = 8.

Una vez tenemos la longitud del lado, la simetría nos lleva a considerar dos pares de posibles vértices. Un par se obtiene sumando 8 a cada una de las coordenadas x de los ya conocidos y el otro se obtiene restando 8. Así pues

C=(11, -2), D=(11,6),

E=(-5,6), F=(-5,-2).

cuadradin

 

Pregunta 2: Halla el punto extremo que hace falta en cada uno de los segmentos dados.
A)  un punto extremo es (0,0) y su punto medio es (5,-3).
B) un punto extremo es (-3,2) y su punto medio es (-1,5).

Respuesta: Recordemos que el punto medio de un segmento de extremos (a,b) y (c,d) es el punto

(\frac{a+c}{2}, \frac{b+d}{2}).

Por tanto, planteamos

A) (\frac{0+c}{2}, \frac{0+d}{2}) =(5,-3),

\frac{c}{2} = 5, \frac{d}{2} =-3,

c= 10, d=-3.

B) Se hace de forma análoga.

Pregunta 3: Dos vértices de una figura geométrica son (0,0) y (6,0) resuelve:
A) si la figura es un triángulo equilátero, ¿cual son las coordenadas del tercer vértice?
B) si la figura es un cuadrado, ¿cuales son las coordenadas de los otros dos vértices?

Respuesta:

A) Encontramos el punto medio del segmento determinado por A=(0,0) y B=(6,0). Es decir,

C =(\frac{0+6}{2}, \frac{0+0}{2}) = (3,0).

Trazamos una recta perpendicular al segmento AB y que pase por dicho punto. Al ser una recta perpendicular el eje de abscisas, su ecuación es

x =3.

Para determinar el vértice del triángulo equilátero, bastará recordar que si la longitud del lado de dicho triángulo es a, la altura mide

h =\frac{a \sqrt{3}}{2}.

Por ello, como a = \sqrt{(6-0)^2+(0-0)^2}= 6. Resulta

h =\frac{6 \sqrt{3}}{2} =3 \sqrt{3},

y esa cantidad se la sumamos en la coordenada y, al punto (3,0), quedando

D= (3, 3 \sqrt{3}).

triangulin

 

B) Es similar a la primera pregunta.