Sobre las ecuaciones de la recta en el plano

Podéis encontrar un video explicativo sobre este tema en mi canal de youtube. Continuaré este tema con algunos ejercicios resueltos.

captura2

 

 

Anuncios

Ejercicio resuelto Espacios vectoriales

Captura de pantalla de 2015-12-04 10-06-31.png

(a) Obviamente W_1 \subset C([0,1]) pues los elementos W_1 son funciones continuas en el intervalo [0,1]. Sean f,g dos elementos del conjunto W_1. Existen pues, a_1,b_1, a_2, b_2, números reales, tales que

f=a_1 x+ b_1 x^3,

g=a_2 x + b_2 x^3.

Sean \lambda, \mu dos números reales.  Entonces

\lambda f + \mu g = \lambda (a_1 x+ b_1 x^3)+ \mu (a_2 x + b_2 x^3) = (\lambda a_1+ \mu a_2) x+ (\lambda b_1 + \mu b_2 ) x^3.

Esto prueba que \lambda f + \mu g pertenece a W_1 y dicho conjunto es un subespacio vectorial de C([0,1]). Usando el  mismo razonamiento podemos ver que W_2 es un subespacio vectorial.

(b) La suma W_1+W_2  es el subespacio vectorial cuyos elementos son de la forma

f+g, con f \in W_1 y g \in W_2.

Pero esto supone que

f+g =ax+bx^3+a' +b'x+c' x^2 = a' + (a+b')x+c'x^2 + bx^3.

Lo que significa que W_1 + W_2 = \{ a+bx+cx^2+dx^3: a,b,c,d \in \mathbb{R} \}. Obviamente la suma no es directa pues

W_1 \cap W_2 = \{ ax : a \in \mathbb{R} \} \neq \{0\}.

Finalmente, es fácil ver que

dim W_1 = 2, dim W_2 = 3.

 

Solución ejercicio espacio vectorial

Respondiendo al correo de consultas de hoy, voy a resolver el siguiente ejercicio:

Captura de pantalla de 2015-11-25 19-29-53

En primer lugar, debemos recordar que una base de Hamel (o base algebraica) de un espacio vectorial es una familia de vectores de dicho espacio que es linealmente independiente y que genera dicho espacio.  El cardinal de la familia de vectores de cualquier base es siempre el mismo y se llama dimensión del espacio vectorial. En el caso de que el cardinal sea finito diremos que el espacio vectorial es de dimensión finita y entonces podemos dar una serie de resultados más sencillos de entender y manejar:

  1. En un espacio vectorial V de dimensión n, todo sistema linealmente independiente tiene como máximo n vectores.
  2. En un espacio vectorial V de dimensión n, todo sistema linealmente independiente con n vectores es una base.

En nuestro problema vamos a utilizar el segundo resultado. En efecto, si B=(v_1, \ldots, v_n) es una base de V, entonces la dimensión de V es n y bastará probar que (u_1, u_2, \ldots, u_n) es una familia de vectores linealmente independientes para concluir que son una base de V. ¿Cómo hacemos esto? Pues planteando la combinación lineal trivial
\sum_{j=1}^{n} \lambda_i u_i =0.
En nuestro caso,
\sum_{j=1}^{n} \lambda_i (\sum_{i=1}^{j} v_i).
Esto parece muy difícil en notación de sumatorios pero en realidad es
\lambda_1 v_1 + \lambda_2 (v_1+v_2) + \ldots + \lambda_n (v_1+ \ldots v_n) =
(\lambda_1+ \ldots + \lambda_n)v_1 + \lambda_2 (v_2+ \ldots + v_n)+ \ldots + \lambda_n v_n =0.
Como v_1, v_2, \ldots, v_n son linealmente independientes (recordemos que son una base), entonces
\lambda_n =0,
\lambda_{n-1}+ \lambda_n = 0,
\ldots ,
\lambda_1 + \lambda_2 + \ldots + \lambda _n = 0.
Es decir, obtenemos un sistema homogéneo cuya única solución es
\lambda_1 = \lambda_2 = \ldots = \lambda_n =0.
Esto prueba que B' =(u_1, u_2, \ldots, u_n) es linealmente independiente y por ello, aplicando el resultado 2, es una base.

Demostrando desigualdades con geometría simple

Captura1

La anterior figura se ha tomado del texto “When Less is More. Visualizing Basic Inequalities” de Claudi Alsina y Roger B. Nelsen y ejemplifica de manera extraordinaria cómo se relacionan la geometría y el cálculo. Justamente dicho texto nos da algunas interesantes demostraciones de desigualdades clásicas utilizando la representación de números reales mediante segmentos de una línea y los siguientes principios:

  1. El principio de inclusión. Cuando un segmento es subconjunto de otro entonces éste es mayor.
  2. El principio geodésico. En el plano euclídeo el camino de menor longitud que une dos puntos es el segmento de recta que tiene a uno como principio y al otro como extremo.
  3. La comparación Pitagórica. En cualquier triángulo el lado opuesto al mayor ángulo es el mayor lado.
  4. La desigualdad del triángulo. En cualquier triángulo la suma de dos de sus lados es mayor que el lado restante.
  5. Comparación de gráficos de funciones. Si el gráfico de y=f(x) yace por encima del gráfico de y=g(x) en un intervalo I, entonces para cada x de dicho intervalo, el segmento que uno (x,f(x)) y (x,g(x)) es positivo, lo que establece que f(x) \geq g(x).

Vamos a utilizar estos principios para demostrar una curiosa desigualdad (el lector interesado puede encontrar el desarrollo más conciso en el texto mencionado). Probaremos que si a,b son números positivos, entonces
\frac{a+b}{2} \leq \sqrt{\frac{a^2+b^2}{2}} \leq \frac{a+b}{\sqrt{2}}.
Vamos a usar la siguiente figura:

grafico1

La longitud del segmento AB es \sqrt{a^2+b^2}, la longitud del segmento BC es también \sqrt{a^2+b^2} mientras que la longitud del segmento AC es \sqrt{ (a+b)^2 + (a+b)^2}. Como vemos en la figura, la longitud del segmento AC es menor que la de la suma de los segmentos AB y BC (principio geodésico), luego

\sqrt{2} (a+b) \leq 2 \sqrt{a^2+b^2}.

Por otro lado, usando el principio 4 (desigualdad del triángulo), es (a+b)+(a+b) \geq 2 \sqrt{a^2+b^2}, quedando

\sqrt{2} (a+b) \leq 2 \sqrt{a^2 + b^2} \leq 2(a+b).

Si multiplicamos todos los miembros de la desigualdad por \frac{1}{2 \sqrt{2}}, obtenemos

\frac{a+b}{2} \leq \sqrt{\frac{a^2+b^2}{2}} \leq \frac{a+b}{\sqrt{2}}.

Ecuaciones cúbicas (2)

Consideremos una ecuación cúbica reducida

x^3+px+q = 0,

donde p y q son diferentes de cero. En la entrada anterior hemos visto cómo podemos resolverla mediante una serie de cambios de variable y usando números complejos. Vamos a resumir todo ese trabajo en una expresión manejable. Consideramos los valores complejos

\alpha = \sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^2}{4}+\frac{p^3}{27}}},

\beta = \sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^2}{4}+\frac{p^3}{27}}}

Las soluciones se obtienen entonces mediante x = \alpha+\beta. Veamos una aplicación con el ejemplo de la entrada anterior (donde hemos cambiado la variable y por x para ajustarnos a la terminología empleada ahora):

x^3- \frac{1}{3}x -\frac{25}{27} =0.

Entonces p= -1/3 y q = -25/27, quedando

\alpha = \sqrt[3]{-\frac{-25/27}{2}+\sqrt{\frac{(-25/27)^2}{4}+\frac{(-1/3)^3}{27}}} = \sqrt[3]{\frac{25}{54}+\frac{\sqrt{621}}{54}},

\beta = \sqrt[3]{-\frac{-25/27}{2}-\sqrt{\frac{(-25/27)^2}{4}+\frac{(-1/3)^3}{27}}} =\sqrt[3]{\frac{25}{54}-\frac{\sqrt{621}}{54}}.

Añadiendo las raíces cúbicas de la unidad obtenemos los resultados buscados

x_1 = \sqrt[3]{\frac{25}{54}+\frac{\sqrt{621}}{54}}+\sqrt[3]{\frac{25}{54}-\frac{\sqrt{621}}{54}},

x_2 =(-\frac{1}{2}+i \frac{\sqrt{3}}{2}) [\sqrt[3]{\frac{25}{54}+\frac{\sqrt{621}}{54}}]+(-\frac{1}{2}-i \frac{\sqrt{3}}{2})[\sqrt[3]{\frac{25}{54}-\frac{\sqrt{621}}{54}}],

x_2 =(-\frac{1}{2}-i \frac{\sqrt{3}}{2}) [\sqrt[3]{\frac{25}{54}+\frac{\sqrt{621}}{54}}]+(-\frac{1}{2}+i \frac{\sqrt{3}}{2})[\sqrt[3]{\frac{25}{54}-\frac{\sqrt{621}}{54}}],

Estos son los valores exactos pero podemos dar valores aproximados sin más que operar y redondear.

Ecuaciones cúbicas (1)

En una entrada anterior del Consultorio Matemático se nos presentaba una ecuación polinómica de tercer grado con coeficientes reales. Ha llegado el momento de explicar el método más usado para su resolución por radicales.
Consideramos ecuaciones de la forma

Ax^3 +Bx^2+Cx+D = 0,

donde A, B, C y D son números reales y A \neq 0. Diremos que la ecuación está normalizada si A=1 y que está en forma reducida si está normalizada y B=0. Esto es, tiene la forma

x^3+cx+d = 0.

Toda ecuación cúbica normalizada puede llevarse a la forma reducida mediante el cambio de variable

x = y-\frac{B}{3}.

Por ejemplo, la ecuación cúbica normalizada x^3-2x^2+x-1=0 se transforma mediante el cambio x = y+\frac{2}{3} en

(y+2/3)^3-2(y+2/3)^2+(y+2/3)-1=0

que desarrollada convenientemente nos lleva a la forma reducida

y^3-\frac{1}{3}y - \frac{25}{27} = 0.

Una vez se halla en forma reducida pasamos a aplicar el cambio y = z-\frac{c}{3z}. En nuestro caso, y = z- \frac{-1/3}{3z} = z+\frac{1}{9z}, quedando

(z+\frac{1}{9z})^3-\frac{1}{3}(z+\frac{1}{9z}) - \frac{25}{27} =0,

que simplificada nos lleva a

z^3+\frac{1}{9^3 z^3}-\frac{25}{27}=0.

Esta ecuación puede hacerse bicuadrada fácilmente al multiplicar ambos miembros por z^3. Es decir,

z^6-\frac{25}{27}z^3+\frac{1}{9^3}=0.

Para resolver la ecuación bicuadrada hacemos z^3 = t y tenemos

t^2-\frac{25}{27} t+\frac{1}{9^3}=0,

cuyas soluciones son
t = \frac{25}{54} +\frac{\sqrt{621}}{54}, t= \frac{25}{54} -\frac{\sqrt{621}}{54}.
Ahora tenemos que “deshacer” los cambios. En primer lugar,

z =\sqrt[3]{t} = \epsilon \sqrt[3]{t},

siendo \epsilon la notación para las tres raíces cúbicas de la unidad en el cuerpo de los complejos. Era inevitable usar números complejos pero he intentado minimizar su “impacto”. Me limitaré a explicar cómo son las tres raíces de la unidad. En primer lugar, escribimos

1 = 1+0i = e^{0i}= 1 ( \cos 0 + i \sin 0).

Sus raíces son

1^{1/3} = \{ 1^{1/3} (\cos \frac{(0+2 k \pi)}{3}+ i \sin \frac{(0+2 k \pi)}{3}), k = 0,1,2 \}.

Es decir,

\epsilon = \{1, -\frac{1}{2}+i \frac{\sqrt{3}}{2}, -\frac{1}{2}-i \frac{\sqrt{3}}{2} \}.

Convenimos en que

\epsilon_1 = 1, \epsilon_2 =-\frac{1}{2}+i \frac{\sqrt{3}}{2}, \epsilon_3 =-\frac{1}{2}-i \frac{\sqrt{3}}{2}.

En consecuencia, tendremos

z =  \epsilon \sqrt[3]{\frac{25}{54} +\frac{\sqrt{621}}{54}}, z= \epsilon \sqrt[3]{\frac{25}{54} -\frac{\sqrt{621}}{54}} .

y = z+\frac{1}{9z} =  \epsilon \sqrt[3]{\frac{25}{54} +\frac{\sqrt{621}}{54}}+ \frac{1}{9 \epsilon \sqrt[3]{\frac{25}{54} +\frac{\sqrt{621}}{54}}} , y= z+\frac{1}{9z} = \epsilon \sqrt[3]{\frac{25}{54} -\frac{\sqrt{621}}{54}} + \frac{1}{9 \epsilon \sqrt[3]{\frac{25}{54} -\frac{\sqrt{621}}{54}}}.

Simplificamos las fracciones multiplicando por sus conjugados. En particular,

\frac{1}{9 \epsilon \sqrt[3]{\frac{25}{54} +\frac{\sqrt{621}}{54}}} = \frac{\sqrt[3]{\frac{25}{54} -\frac{\sqrt{621}}{54}}}{9 \epsilon \sqrt[3]{\frac{25}{54} +\frac{\sqrt{621}}{54}}(\sqrt[3]{\frac{25}{54} -\frac{\sqrt{621}}{54}})} =\frac{\sqrt[3]{\frac{25}{54} -\frac{\sqrt{621}}{54}}}{ \epsilon} .

Sustituyendo de nuevo vemos que

y = \epsilon \sqrt[3]{\frac{25}{54} +\frac{\sqrt{621}}{54}}+\frac{\sqrt[3]{\frac{25}{54} -\frac{\sqrt{621}}{54}}}{ \epsilon}

y = \epsilon \sqrt[3]{\frac{25}{54} -\frac{\sqrt{621}}{54}}+\frac{\sqrt[3]{\frac{25}{54} +\frac{\sqrt{621}}{54}}}{ \epsilon} .

Ahora deberíamos poner los tres valores de \epsilon para obtener seis soluciones. Sin embargo, teniendo en cuenta que \epsilon_2 \epsilon_3 =1 vemos que \epsilon_2 = \frac{1}{\epsilon_3}, de donde

y_1 =  \sqrt[3]{\frac{25}{54} +\frac{\sqrt{621}}{54}}+\sqrt[3]{\frac{25}{54} -\frac{\sqrt{621}}{54}}

y_2 =  \sqrt[3]{\frac{25}{54} -\frac{\sqrt{621}}{54}}+\sqrt[3]{\frac{25}{54}+\frac{\sqrt{621}}{54}} .

y_3 = \epsilon_2\sqrt[3]{\frac{25}{54} +\frac{\sqrt{621}}{54}}+\frac{\sqrt[3]{\frac{25}{54} -\frac{\sqrt{621}}{54}}}{ \epsilon_3}

y_4 = \epsilon_2 \sqrt[3]{\frac{25}{54} -\frac{\sqrt{621}}{54}}+\frac{\sqrt[3]{\frac{25}{54} +\frac{\sqrt{621}}{54}}}{ \epsilon_3} .

y_5 = \epsilon_3 \sqrt[3]{\frac{25}{54} +\frac{\sqrt{621}}{54}}+\frac{\sqrt[3]{\frac{25}{54} -\frac{\sqrt{621}}{54}}}{\epsilon_2}

y_6 = \epsilon_3 \sqrt[3]{\frac{25}{54} -\frac{\sqrt{621}}{54}}+\frac{\sqrt[3]{\frac{25}{54} +\frac{\sqrt{621}}{54}}}{ \epsilon_2} .

Se aprecia pues que y_1=y_2, y_3=y_4 e y_5=y_6, quedando tres soluciones. La primera de ellas es la única real y vale

y =\sqrt[3]{\frac{25}{54} +\frac{\sqrt{621}}{54}}+\sqrt[3]{\frac{25}{54} -\frac{\sqrt{621}}{54}}.

Las otras dos son complejas y su cálculo es un poco más laborioso. Una vez obtenidas, debemos hacer el cambio final x = y+\frac{2}{3}.
Como el lector puede apreciar, este sistema de obtención de soluciones se presenta largo y complicado. Podemos simplificarlo un poco utilizando una fórmula. Pero esto lo veremos en la próxima entrada.

Formas cuadráticas (4 y final)

Daremos un ejemplo de forma bilineal simétrica:

Consideremos E=\mathbb{R}^{2} y sea la forma bilineal simétrica definida sobre \mathbb{R}^{2} mediante f((x_{1}, x_{2}), (y_{1}, y_{2}))= x_{1} y_{1} + 2 x_{2} y_{2}. Su matriz respecto a la base canónica es

matriz4

Por tanto, la expresión matricial queda

matriz5

La forma cuadrática asociada q es q(x_{1},x_{2})= x_{1}^{2} +2 x_{2}^{2}, que expresada en forma matricial es

matriz6

Como hemos visto en el ejemplo anterior, las formas cuadráticas tienen expresiones analíticas en la base canónica que resultan ser polinomios homogéneos de grado n (en el ejemplo, es de grado 2). El resultado recíproco es también cierto como pasamos a probar.

Teorema 1. Todo polinomio homogéneo de grado 2 en n variables x_{1}, x_{2}, \cdots, x_{n} y coeficientes reales puede considerarse como la expresión analítica de una forma cuadrática definida en el espacio vectorial real \mathbb{R}^{n}.

Demostración. Sea p(x_{1}, x_{2}, \cdots, x_{n}) = \sum_{ij=1, i< j}^{n} \lambda_{ij} x_{i}x_{j} un polinomio homogéneo de grado 2 con coeficientes \lambda_{ij} reales. Definimos la matriz cuadrada A=(a_{ij}) de orden n mediante

matriz7

Esta matriz es simétrica (por su misma construcción) y la aplicación q: \mathbb{R}^{n} \rightarrow \mathbb{R}, definida por

matriz8

es una forma cuadrática expresada en forma matricial respecto de la base canónica. Esto termina nuestra demostración.

Las formas cuadráticas ofrecen resultados numéricos, por ello es interesante hallar el signo de tales resultados.

Definición 1. Una forma cuadrática q: E \rightarrow K se dice definida positiva si q(u) \geq 0 para todo u \in E y $q(u)=0$ si y sólo si u=0.
Definición 2. Una forma cuadrática q: E \rightarrow K se dice definida negativa si q(u) \leq 0 para todo u \in E y q(u)=0 si y sólo si u=0.
Definición 3. Una forma cuadrática q: E \rightarrow K se dice semidefinida positiva si q(u) \geq 0 para todo u \in E y existe al menos un u \neq 0 tal que q(u)=0.