Álgebra, Vídeos

Discusión de un sistema lineal parametrizado

Discutimos un sistema lineal de tres incógnitas con un parámetro.

sistemapara

 

Anuncios
Álgebra

Ejercicio resuelto Espacios vectoriales

Captura de pantalla de 2015-12-04 10-06-31.png

(a) Obviamente W_1 \subset C([0,1]) pues los elementos W_1 son funciones continuas en el intervalo [0,1]. Sean f,g dos elementos del conjunto W_1. Existen pues, a_1,b_1, a_2, b_2, números reales, tales que

f=a_1 x+ b_1 x^3,

g=a_2 x + b_2 x^3.

Sean \lambda, \mu dos números reales.  Entonces

\lambda f + \mu g = \lambda (a_1 x+ b_1 x^3)+ \mu (a_2 x + b_2 x^3) = (\lambda a_1+ \mu a_2) x+ (\lambda b_1 + \mu b_2 ) x^3.

Esto prueba que \lambda f + \mu g pertenece a W_1 y dicho conjunto es un subespacio vectorial de C([0,1]). Usando el  mismo razonamiento podemos ver que W_2 es un subespacio vectorial.

(b) La suma W_1+W_2  es el subespacio vectorial cuyos elementos son de la forma

f+g, con f \in W_1 y g \in W_2.

Pero esto supone que

f+g =ax+bx^3+a' +b'x+c' x^2 = a' + (a+b')x+c'x^2 + bx^3.

Lo que significa que W_1 + W_2 = \{ a+bx+cx^2+dx^3: a,b,c,d \in \mathbb{R} \}. Obviamente la suma no es directa pues

W_1 \cap W_2 = \{ ax : a \in \mathbb{R} \} \neq \{0\}.

Finalmente, es fácil ver que

dim W_1 = 2, dim W_2 = 3.

 

Álgebra, Consultorio

Solución ejercicio espacio vectorial

Respondiendo al correo de consultas de hoy, voy a resolver el siguiente ejercicio:

Captura de pantalla de 2015-11-25 19-29-53

En primer lugar, debemos recordar que una base de Hamel (o base algebraica) de un espacio vectorial es una familia de vectores de dicho espacio que es linealmente independiente y que genera dicho espacio.  El cardinal de la familia de vectores de cualquier base es siempre el mismo y se llama dimensión del espacio vectorial. En el caso de que el cardinal sea finito diremos que el espacio vectorial es de dimensión finita y entonces podemos dar una serie de resultados más sencillos de entender y manejar:

  1. En un espacio vectorial V de dimensión n, todo sistema linealmente independiente tiene como máximo n vectores.
  2. En un espacio vectorial V de dimensión n, todo sistema linealmente independiente con n vectores es una base.

En nuestro problema vamos a utilizar el segundo resultado. En efecto, si B=(v_1, \ldots, v_n) es una base de V, entonces la dimensión de V es n y bastará probar que (u_1, u_2, \ldots, u_n) es una familia de vectores linealmente independientes para concluir que son una base de V. ¿Cómo hacemos esto? Pues planteando la combinación lineal trivial
\sum_{j=1}^{n} \lambda_i u_i =0.
En nuestro caso,
\sum_{j=1}^{n} \lambda_i (\sum_{i=1}^{j} v_i).
Esto parece muy difícil en notación de sumatorios pero en realidad es
\lambda_1 v_1 + \lambda_2 (v_1+v_2) + \ldots + \lambda_n (v_1+ \ldots v_n) =
(\lambda_1+ \ldots + \lambda_n)v_1 + \lambda_2 (v_2+ \ldots + v_n)+ \ldots + \lambda_n v_n =0.
Como v_1, v_2, \ldots, v_n son linealmente independientes (recordemos que son una base), entonces
\lambda_n =0,
\lambda_{n-1}+ \lambda_n = 0,
\ldots ,
\lambda_1 + \lambda_2 + \ldots + \lambda _n = 0.
Es decir, obtenemos un sistema homogéneo cuya única solución es
\lambda_1 = \lambda_2 = \ldots = \lambda_n =0.
Esto prueba que B' =(u_1, u_2, \ldots, u_n) es linealmente independiente y por ello, aplicando el resultado 2, es una base.