Consulta sobre geometría

Estas son algunas respuestas para Karen Álvarez.

Pregunta 1: Los puntos A =(3,-2) y B=(3,6) son dos de los vértices de un cuadrado. Halla dos pares de puntos que puedan ser los otros dos vértices.

Respuesta:  Es fácil ver que los dos vértices que conocemos se hallan en el mismo lado pues comparten una coordenada (en este caso x=3). Esto nos permite hallar la longitud L  del lado del cuadrado mediante una simple operación:

L = \sqrt{(3-3)^2 + (6-(-2))^2} = 8.

Una vez tenemos la longitud del lado, la simetría nos lleva a considerar dos pares de posibles vértices. Un par se obtiene sumando 8 a cada una de las coordenadas x de los ya conocidos y el otro se obtiene restando 8. Así pues

C=(11, -2), D=(11,6),

E=(-5,6), F=(-5,-2).

cuadradin

 

Pregunta 2: Halla el punto extremo que hace falta en cada uno de los segmentos dados.
A)  un punto extremo es (0,0) y su punto medio es (5,-3).
B) un punto extremo es (-3,2) y su punto medio es (-1,5).

Respuesta: Recordemos que el punto medio de un segmento de extremos (a,b) y (c,d) es el punto

(\frac{a+c}{2}, \frac{b+d}{2}).

Por tanto, planteamos

A) (\frac{0+c}{2}, \frac{0+d}{2}) =(5,-3),

\frac{c}{2} = 5, \frac{d}{2} =-3,

c= 10, d=-3.

B) Se hace de forma análoga.

Pregunta 3: Dos vértices de una figura geométrica son (0,0) y (6,0) resuelve:
A) si la figura es un triángulo equilátero, ¿cual son las coordenadas del tercer vértice?
B) si la figura es un cuadrado, ¿cuales son las coordenadas de los otros dos vértices?

Respuesta:

A) Encontramos el punto medio del segmento determinado por A=(0,0) y B=(6,0). Es decir,

C =(\frac{0+6}{2}, \frac{0+0}{2}) = (3,0).

Trazamos una recta perpendicular al segmento AB y que pase por dicho punto. Al ser una recta perpendicular el eje de abscisas, su ecuación es

x =3.

Para determinar el vértice del triángulo equilátero, bastará recordar que si la longitud del lado de dicho triángulo es a, la altura mide

h =\frac{a \sqrt{3}}{2}.

Por ello, como a = \sqrt{(6-0)^2+(0-0)^2}= 6. Resulta

h =\frac{6 \sqrt{3}}{2} =3 \sqrt{3},

y esa cantidad se la sumamos en la coordenada y, al punto (3,0), quedando

D= (3, 3 \sqrt{3}).

triangulin

 

B) Es similar a la primera pregunta.

Anuncios

3 pensamientos en “Consulta sobre geometría

  1. Liss Orozco

    Este tema es de mucha importancia porque nos ayuda a los estudiantes a poder comprender sobre la geometría así nos ayuda con los ejercicios que nos plantean para que se nos resulte mas fáciles y sencillos de comprender así poder gráficar en la recta
    Liss Orozco
    Primero bachillerato ¨A¨

    Responder
  2. Andrea Auquilla

    Con respecto a este tema mi opinión es que la geometría es muy importante ya que podemos ver la longitud del lado del cuadrado mediante una operación en conclusión este tema nos permite saber nuevos métodos de resolver ejercicios relacionados con este sin ningún inconveniente ya que hay maneras mas fáciles y rápidas de hacer o maneras en las que se pueda comprender el procedimiento

    Andrea Auquilla
    Primero bachillerato “A”

    Responder

Responder a Liss Orozco Cancelar respuesta

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s