Solución ejercicio espacio vectorial

Respondiendo al correo de consultas de hoy, voy a resolver el siguiente ejercicio:

Captura de pantalla de 2015-11-25 19-29-53

En primer lugar, debemos recordar que una base de Hamel (o base algebraica) de un espacio vectorial es una familia de vectores de dicho espacio que es linealmente independiente y que genera dicho espacio.  El cardinal de la familia de vectores de cualquier base es siempre el mismo y se llama dimensión del espacio vectorial. En el caso de que el cardinal sea finito diremos que el espacio vectorial es de dimensión finita y entonces podemos dar una serie de resultados más sencillos de entender y manejar:

  1. En un espacio vectorial V de dimensión n, todo sistema linealmente independiente tiene como máximo n vectores.
  2. En un espacio vectorial V de dimensión n, todo sistema linealmente independiente con n vectores es una base.

En nuestro problema vamos a utilizar el segundo resultado. En efecto, si B=(v_1, \ldots, v_n) es una base de V, entonces la dimensión de V es n y bastará probar que (u_1, u_2, \ldots, u_n) es una familia de vectores linealmente independientes para concluir que son una base de V. ¿Cómo hacemos esto? Pues planteando la combinación lineal trivial
\sum_{j=1}^{n} \lambda_i u_i =0.
En nuestro caso,
\sum_{j=1}^{n} \lambda_i (\sum_{i=1}^{j} v_i).
Esto parece muy difícil en notación de sumatorios pero en realidad es
\lambda_1 v_1 + \lambda_2 (v_1+v_2) + \ldots + \lambda_n (v_1+ \ldots v_n) =
(\lambda_1+ \ldots + \lambda_n)v_1 + \lambda_2 (v_2+ \ldots + v_n)+ \ldots + \lambda_n v_n =0.
Como v_1, v_2, \ldots, v_n son linealmente independientes (recordemos que son una base), entonces
\lambda_n =0,
\lambda_{n-1}+ \lambda_n = 0,
\ldots ,
\lambda_1 + \lambda_2 + \ldots + \lambda _n = 0.
Es decir, obtenemos un sistema homogéneo cuya única solución es
\lambda_1 = \lambda_2 = \ldots = \lambda_n =0.
Esto prueba que B' =(u_1, u_2, \ldots, u_n) es linealmente independiente y por ello, aplicando el resultado 2, es una base.

Anuncios

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s