Un problema de sucesiones de conjuntos

Problema: Sean A_n y B_n sucesiones de partes de un conjunto X y sea B_n \subset A_n, para todo n \geq 1. Probar que entonces \lim \inf B_n \subset \lim \inf A_n y que la misma relación de inclusión se tiene para el límite inferior.
Solución: Como resulta que B_n \subset A_n, para todo n, si definimos las sucesiones:
D_n = \cup_{k=n}^{\infty} B_k,
E_n = \cup_{k=n}^{\infty} A_k,
podemos probar por inducción que
D_n \subset E_n, para todo n. Es decir,
\lim \inf B_n = \cap_{n=1}^{\infty} D_n \subset \cap_{n=1}^{\infty} E_n = \lim \inf A_n.
El mismo razonamiento se puede aplicar para demostrar la inclusión del límite superior usando las sucesiones
H_n = \cap_{k=n}^{\infty} B_k,
J_n = \cap_{k=n}^{\infty} A_k.
Esto termina nuestro desarrollo. Ahora bien, ¿cómo utilizamos la inducción para probar que D_n \subset E_n? Pues bien, vamos a esbozar el procedimiento. En primer lugar, dado n definimos para r=1,2, \ldots:
D_{n}^{r} = \cup_{k=n}^{r} B_k,
E_{n}^{r} = \cup_{k=n}^{r} A_k.
Por hipótesis, si n es fijo
D_{n}^{r} \subset E_{n}^{r}.
Entonces,
D_{n}^{r+1} = D_{n}^{r} \cup B_{r+1} \subset E_{n}^{r} \cup A_{r+1} = E_{n}^{r+1}.
Esto significa que para cualquier r es
D_{n}^{r} \subset E_{n}^{r},
luego
D_n = D_{n}^{\infty} \subset E_{n}^{\infty} = E_n,
que es lo que queríamos probar.

Anuncios

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s