Archivos Mensuales: noviembre 2015

Examen resuelto C. Acceso UNED

Correspondiente a Septiembre de 2011. Puede descargarse en la sección de Ejercicios y Exámenes Resueltos o en este enlace

Anuncios

Un ejercicio más de E.V.

Captura de pantalla de 2015-11-28 10-54-26

Recordemos que si E y F son dos subespacios vectoriales de V, entonces el conjunto

E+F = \{ u+v: u \in E, v \in F \}

es un subespacio de V y además el más pequeño entre aquellos que incluyen a ambos. Es decir,
E \cup F \subset E+F \subset H,
para todo H subespacio de V que incluye a E y a F. En el caso de que E \cap F = \{0 \} y sólo en ese caso diremos que la suma E+F es directa y escribimos E \bigoplus F.  Por otro lado, la notación

L(S)

hace referencia a la envoltura lineal del conjunto S. Esto es, al subespacio vectorial formado por las combinaciones lineales de los elementos de S o lo que es lo mismo, al menor subespacio vectorial que incluye a S.

(a) Sean S_1 y S_2 dos subconjuntos finitos de vectores de V, linealmente independientes. Por ejemplo, si suponemos que V = \mathbb{R}^2, y definimos

S_1= \{(0,1)\}, S_2 = \{(0,1),(1,1) \}.

Tenemos que

L(S_1) = \{(0.x) : x \in \mathbb{R} \}, \quad L(S_2) = \mathbb{R}^2 ,

por lo que L(S_1) \cap L(S_2) = L(S_1) y la suma L(S_1)+L(S_2) no es directa.

(b) Si L(S_1) \bigoplus L(S_2), entonces L(S_1) \cap L(S_2) = \{0\} o lo que es lo mismo, cada vector de L(S_1) + L(S_2) se puede escribir de una sola forma como suma de un vector de L(S_1) y otro de L(S_2). En particular, si formamos la combinación lineal

\lambda_1 u_1 + \lambda_n u_n+ \mu_1 v_1+ \ldots + \mu_m v_m =0,

tenemos que

\lambda_1 u_1 + \ldots + \lambda_n v_n = -\mu_1 v_1 - \ldots - \mu_m v_m.

Es decir, tenemos un vector que pertenece a la intersección L(S_1) \cap L(S_2) por lo que será nulo. Es decir,

\lambda_1 u_1 + \ldots + \lambda_n v_n = 0,

-\mu_1 v_1 - \ldots - \mu_m v_m = 0.

Pero esto no garantiza que todos los escalares sean nulos. Sólo será posible si tanto S_1 como S_2 son linealmente independientes. Así que la afirmación (b) es falsa.

(c) Por nuestras explicaciones iniciales podemos afirmar que

L(S_1) \cup L(S_2) \subset L(S_1)+L(S_2).

Como S_1 \subset L(S_1) y S_2 \subset L(S_2) concluimos que

S_1 \cup S_2 \subset L(S_1) \cup L(S_2) \subset L(S_1)+L(S_2).

En consecuencia,

L(S_1 \cup S_2) \subset L(S_1)+ L(S_2).

Por otro lado, si z es un vector L(S_1)+L(S_2), hallaremos

u = \sum_{i=1}^{n} \lambda_i u_i, \quad v= \sum_{j=1}^{m} \mu_{j} v_j,

tales que

z = u+v = \sum_{i=1}^{n} \lambda_i u_i+\sum_{j=1}^{m} \mu_{j} v_j,

luego z \in L(S_1 \cup S_2). Esto prueba que L(S_1) + L(S_2) \subset L(S_1 \cup S_2) y la doble inclusión nos lleva a la igualdad

L(S_1 \cup S_2) =L(S_1)+ L(S_2).

Solución ejercicio espacio vectorial

Respondiendo al correo de consultas de hoy, voy a resolver el siguiente ejercicio:

Captura de pantalla de 2015-11-25 19-29-53

En primer lugar, debemos recordar que una base de Hamel (o base algebraica) de un espacio vectorial es una familia de vectores de dicho espacio que es linealmente independiente y que genera dicho espacio.  El cardinal de la familia de vectores de cualquier base es siempre el mismo y se llama dimensión del espacio vectorial. En el caso de que el cardinal sea finito diremos que el espacio vectorial es de dimensión finita y entonces podemos dar una serie de resultados más sencillos de entender y manejar:

  1. En un espacio vectorial V de dimensión n, todo sistema linealmente independiente tiene como máximo n vectores.
  2. En un espacio vectorial V de dimensión n, todo sistema linealmente independiente con n vectores es una base.

En nuestro problema vamos a utilizar el segundo resultado. En efecto, si B=(v_1, \ldots, v_n) es una base de V, entonces la dimensión de V es n y bastará probar que (u_1, u_2, \ldots, u_n) es una familia de vectores linealmente independientes para concluir que son una base de V. ¿Cómo hacemos esto? Pues planteando la combinación lineal trivial
\sum_{j=1}^{n} \lambda_i u_i =0.
En nuestro caso,
\sum_{j=1}^{n} \lambda_i (\sum_{i=1}^{j} v_i).
Esto parece muy difícil en notación de sumatorios pero en realidad es
\lambda_1 v_1 + \lambda_2 (v_1+v_2) + \ldots + \lambda_n (v_1+ \ldots v_n) =
(\lambda_1+ \ldots + \lambda_n)v_1 + \lambda_2 (v_2+ \ldots + v_n)+ \ldots + \lambda_n v_n =0.
Como v_1, v_2, \ldots, v_n son linealmente independientes (recordemos que son una base), entonces
\lambda_n =0,
\lambda_{n-1}+ \lambda_n = 0,
\ldots ,
\lambda_1 + \lambda_2 + \ldots + \lambda _n = 0.
Es decir, obtenemos un sistema homogéneo cuya única solución es
\lambda_1 = \lambda_2 = \ldots = \lambda_n =0.
Esto prueba que B' =(u_1, u_2, \ldots, u_n) es linealmente independiente y por ello, aplicando el resultado 2, es una base.

Un problema de sucesiones de conjuntos

Problema: Sean A_n y B_n sucesiones de partes de un conjunto X y sea B_n \subset A_n, para todo n \geq 1. Probar que entonces \lim \inf B_n \subset \lim \inf A_n y que la misma relación de inclusión se tiene para el límite inferior.
Solución: Como resulta que B_n \subset A_n, para todo n, si definimos las sucesiones:
D_n = \cup_{k=n}^{\infty} B_k,
E_n = \cup_{k=n}^{\infty} A_k,
podemos probar por inducción que
D_n \subset E_n, para todo n. Es decir,
\lim \inf B_n = \cap_{n=1}^{\infty} D_n \subset \cap_{n=1}^{\infty} E_n = \lim \inf A_n.
El mismo razonamiento se puede aplicar para demostrar la inclusión del límite superior usando las sucesiones
H_n = \cap_{k=n}^{\infty} B_k,
J_n = \cap_{k=n}^{\infty} A_k.
Esto termina nuestro desarrollo. Ahora bien, ¿cómo utilizamos la inducción para probar que D_n \subset E_n? Pues bien, vamos a esbozar el procedimiento. En primer lugar, dado n definimos para r=1,2, \ldots:
D_{n}^{r} = \cup_{k=n}^{r} B_k,
E_{n}^{r} = \cup_{k=n}^{r} A_k.
Por hipótesis, si n es fijo
D_{n}^{r} \subset E_{n}^{r}.
Entonces,
D_{n}^{r+1} = D_{n}^{r} \cup B_{r+1} \subset E_{n}^{r} \cup A_{r+1} = E_{n}^{r+1}.
Esto significa que para cualquier r es
D_{n}^{r} \subset E_{n}^{r},
luego
D_n = D_{n}^{\infty} \subset E_{n}^{\infty} = E_n,
que es lo que queríamos probar.

Corrección errata

En los problemas del Capítulo uno del borrador del texto sobre Teoría de la Medida hay una errata que ya he corregido. Este es el enunciado correcto.

Problema: Sean \mathcal{S}_1 y \mathcal{S}_2, semianillos sobre X e Y, respectivamente. Probar que el producto \mathcal{S}_1 \times \mathcal{S}_2 es un semianillo sobre X \times Y.
¿Cómo podemos utilizar este resultado para resolver el problema anterior?}
Solución: Sabemos que el vacío pertenece a todo semianillo. Por tanto,
\emptyset \times \emptyset = \emptyset \in \mathcal{S}_1 \times \mathcal{S}_2 .
Sean E y F elementos de \mathcal{S}_1 \times \mathcal{S}_2. Hallaremos A_1, B_1 \in \mathcal{S}_1 y A_2, B_2 \in \mathcal{S}_2, tales que
E = A_1 \times A_2, \quad F = B_1 \times B_2.
Por ello,
E \cap F = (A_1 \times A_2) \cap (B_1 \times B_2) = (A_1 \cap B_1) \times (A_2 \cap B_2).
Pero todo semianillo es un \pi-sistema por lo que A_1 \cap B_1 \in \mathcal{S}_1, A_2 \cap B_2 \in \mathcal{S}_2 y E \cap F \in \mathcal{S}_1 \times \mathcal{S}_2. Por tanto, el producto cartesiano de semianillos también es un \pi-sistema. Por otro lado,
E-F = (A_1 \times A_2)- (B_1 \times B_2) = ((A_1-B_1) \times A_2)) \biguplus ((A_1 \cap B_1) \times (A_2-B_2)).
Pero sabemos que A_1-B_1 = \biguplus_{i=1}^{n} C_i y A_2-B_2 = \biguplus_{j=1}^{m} D_j, donde C_i \in \mathcal{S}_1 y D_j \in \mathcal{S}_2. Por tanto, si hacemos A_1 \cap B_1 = H_1 \in \mathcal{S}_1, tenemos
E-F = ((A_1-B_1) \times A_2) \biguplus (H_1 \times (A_2-B_2)) =
((\biguplus_{i=1}^{n} C_i) \times A_2) \biguplus (H_1 \times (\biguplus_{j=1}^{m} D_j)) = \bigg(\biguplus_{i=1}^{n} (C_i \times A_2) \bigg) \biguplus \bigg( \biguplus_{j=1}^{m} (H_1 \times D_j) \bigg)

Es decir, E-F es unión finita y disjunta de elementos de \mathcal{S}_1 \times \mathcal{S}_2. Este resultado se puede generalizar por inducción para n semianillos, donde n es un entero positivo mayor o igual que dos. Bastará recordar que se define
\times_{i=1}^{n} S_i = (\times_{i=1}^{n-1} S_i) \times S_n .

Un ejercicio de inducción

Probar por inducción que n(n+1)(n+2)(n+3) es divisible por 24 (o equivalentemente que n(n+1)(n+2)(n+3) es múltiplo de 24).

Solución: Este problema no se resuelve aplicando directamente la inducción. Hay que dar un pequeño “rodeo”. Lo esencial es advertir que

24 = 4! = 4 \cdot 3 \cdot 2 \cdot 1.

Si tenemos eso en mente veremos que basta probar que n(n+1) es múltiplo de 2! =2, n(n+1)(n+2) es múltiplo de 3! = 6 y n(n+1)(n+2)(n+2) es múltiplo de de 24.

Para n=1 tenemos

1 \cdot 2 =2 es múltiplo de 2.

1 \cdot 2 \cdot 3=6 es múltiplo de 6.

1 \cdot 2 \cdot 3 \cdot =24 es múltiplo de 24.

La hipótesis de inducción para k es que k(k+1) es múltiplo de 2, k(k+1)(k+2) lo es de 6 y k(k+1)(k+2)(k+3) lo es de 24. Vemos que ocurre para k+1.

(k+1)(k+2) = (k+2)(k+1)=k(k+1)+ 2(k+1). Como hemos asumido que k(k+1) es múltiplo de 2, es obvio que k(k+1)+2(k+1) es un múltiplo de 2 al ser suma de múltiplos de 2.

(k+1)(k+2)(k+3) = (k+3) (k+1)(k+2)= k(k+1)(k+2)+3(k+1)(k+2). Como hemos supuesto que (k+1)(k+2) es múltiplo de 2 es obvio que 3(k+1)(k+2) es múltiplo de 6 y como k(k+1)(k+2) es múltiplo de 6, concluimos que la suma es múltiplo de seis al ser suma de dos múltiplos de este número.

(k+1)(k+2)(k+3)(k+4) = (k+4)(k+1)(k+2)(k+3) = k(k+1)(k+2)(k+3)+4(k+1)(k+2)(k+3).

De nuevo aplicando la hipótesis de inducción vemos que k(k+1)(k+2)(k+3) es múltiplo de 24. Ahora bien, como (k+1)(k+2)(k+3) es múltiplo de 6, concluimos que 4(k+1)(k+2)(k+3) es múltiplo de 24 y la suma ha de ser múltiplo de 24. Esto termina la demostración.