Lectura 1. Funciones de conjunto, contenidos, premedidas y medidas

Consideremos un conjunto no vacío \Omega  y sea \mathcal{A} una clase no vacía de partes de \Omega. Toda aplicación

f: \mathcal{A} \rightarrow \overline{\mathbb{R}}

se denomina función de conjunto. Recordemos que \overline{\mathbb{R}} es la recta real ampliada. En general, nos van a interesar funciones de conjunto no negativas. Esto es, funciones de conjunto cuyos valores sean mayores o iguales que cero. Sea pues,

\mu : \mathcal{A} \rightarrow [0,+\infty]

una función de conjunto no negativa, diremos que \mu es

  • monótona, si para todos A,B \in \mathcal{A}, tales que A \subset B, es \mu(A) \leq \mu(B),
  • finitamente aditiva (o aditiva), si para cualquier colección A_1, A_2, \ldots, A_n, de elementos de \mathcal{A}, disjuntos dos a dos y tales que \biguplus_{i=1}^{n} A_i \in \mathcal{A} es \mu (\biguplus_{i=1}^{n} A_i) = \sum_{i=1}^{n} \mu (A_i),
  • numerablemente aditiva (\sigma-aditiva), si para cualquier sucesión (A_n)_{n=1}^{\infty} de elementos de \mathcal{A}, disjuntos dos a dos y tales que \biguplus_{n=1}^{\infty} A_n \in \mathcal{A}, se tiene que \mu(\biguplus_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n),
  • finitamente subaditiva, si para cualquier colección A_1, A_2, \ldots, A_n, de elementos de \mathcal{A} con \cup_{i=1}^{n} A_i \in \mathcal{A}, es \mu ( \cup_{i=1}^{n} A_i) \leq \sum_{i=1}^{n} \mu(A_i),
  • numerablemente subaditiva, si para cualquier sucesión (A_n)_{n=1}^{\infty} de elementos de \mathcal{A}, tales que \cup_{n=1}^{\infty} A_n \in \mathcal{A} es \mu(\cup_{n=1}^{\infty}A_n )\leq \sum_{n=1}^{\infty} \mu(A_n).

Obsérvese que salvo la condición de monotonía, el resto de condiciones exige el cierre para las uniones (unas veces finitas y otras infinito numerables). Como sabemos, la estructura de anillo de conjuntos es la adecuada para garantizar al menos el cierre para la unión finita. Por ello resultaría natural exigir que la clase a la que se aplica la función de conjunto no negativa sea al menos un anillo. En muchos textos se hace así pero si queremos una mayor generalidad podemos usar la estructura de semianillo.  Además, también es conveniente exigir que la función de conjunto definida sobre el semianillo verifique \mu (\emptyset) = 0 (recordemos que el vacío es elemento de todo semianillo). Así pues, si \mathcal{A} es un semianillo sobre \Omega, diremos que una función de conjunto \mu : \mathcal{A} \rightarrow [0,+\infty] , es

  • un contenido, si \mu es finitamente aditiva,
  • una premedida, si \mu es numerablemente aditiva,
  • una medida, si \mu es una premedida y \mathcal{A} es una \sigma-álgebra (o un \sigma-anillo),
  • una medida de probabilidad, si \mu es una medida sobre una \sigma-álgebra y \mu(\Omega) = 1.
Anuncios

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s