Álgebra generada por una clase no vacía

Sea X un conjunto no vacío y sea \mathcal{M} una clase no vacía de partes de X. Probaremos el siguiente resultado.

Teorema
Definimos las clases
\mathcal{M}_1 = \{ \emptyset, X \} \cup \mathcal{M} \cup \{ A^c : A \in \mathcal{M} \},

\mathcal{M}_2 = \pi(\mathcal{M}_1)= \{B: B=\cap_{i=1}^{n} A_i : A_i \in \mathcal{M}_1 \},

\mathcal{M}_3 = \{C: C=\cup_{j=1}^{m} B_j : B_j \in \mathcal{M}_2 \}.

Entonces \mathcal{M}_3 es el álgebra generada por \mathcal{M}.

Demostración.

Por construcción es \mathcal{M} \subset \mathcal{M}_1 \subset \mathcal{M}_2 \subset \mathcal{M}_3. Sea \mathcal{A} un álgebra que incluye a \mathcal{M}, entonces incluirá al conjunto vacío, al propio X y a los complementarios de los elementos de \mathcal{M}. Así pues

\mathcal{M}_1 \subset \mathcal{A}.
Pero toda álgebra es un \pi-sistema por lo que incluirá a las intersecciones finitas de sus elementos y así concluiremos que

\mathcal{M}_2 \subset \mathcal{A}.

Finalmente, sabemos que toda álgebra es cerrada para las uniones finitas de sus elementos por lo que

\mathcal{M}_3 \subset \mathcal{A}.

Sólo nos resta probar que \mathcal{M}_3 es un álgebra. Sean C_1 y C_2 elementos de \mathcal{M}_3, entonces

C_1 = \cup_{i=1}^{n} B_i, \quad C_2 = \cup_{j=1}^{m} D_j,

donde B_i y D_j son elementos de \mathcal{M}_2. Tenemos

C_1 \cap C_2 = (\cup_{i=1}^{n} B_i) \cap (\cup_{j=1}^{m} D_j) = \cup \{ B_i \cap D_j, i=1, \ldots, n, j=1, \ldots, m \}.

Pero como B_i \cap D_j \in \mathcal{M}_2, para i=1, \dots, n, j=1, \ldots, m, se sigue que C_1 \cap C_2 es un elemento de \mathcal{M}_3. Por otro lado, sea B = \cap_{i=1}^{r}A_i un elemento de \mathcal{M}_2, entonces

B^c = ( \cap_{i=1}^{r} A_i)^c = \cup_{i=1}^{r}A_i^c.

Esto significa que B^c \in \mathcal{M}_3. Finalmente, si C = \cup_{j=1}^{n} B_j es un elemento de \mathcal{M}_3 tenemos

C^c = (\cup_{j=1}^{n} B_j)^c = \cap_{j=1}^{n} B_j^c

y como cada B_j^c pertenece a \mathcal{M}_3 y esta clase es cerrada para la intersección concluimos que C^c es también un elemento de \mathcal{M}_3. Esto prueba que dicha clase es un anillo y como X \in \mathcal{M}_3, será un álgebra.

Comentarios

En primer lugar, hemos usado el hecho de que el álgebra generada por una clase es la intersección de todas las álgebras que la contienen por lo que si \mathcal{M}_3 es un álgebra incluida en todas las que incluyen a \mathcal{M} es obvio que coincide con la intersección de estas.

Anuncios

Ecuaciones trigonométricas (2)

Continuamos resolviendo algunas ecuaciones trigonométricas.  En este caso nos atrevemos con la siguiente:

\tan 2x -4 \sin x \cos x + 1 = 4 \sin^{2} x.

Emplearemos las fórmulas del ángulo doble y el desarrollo buscará factorizar de alguna manera la expresión. Empezaremos con la tangente del ángulo doble:

\tan 2x = \frac{ \sin 2x}{\cos 2x} = \frac{ 2 \cos x \sin x}{\cos^{2} x - \sin^{2} x }.

Sustituimos y sacamos factor común

\frac{ 2 \cos x \sin x}{\cos^{2} x - \sin^{2} x }-4 \sin x \cos x + 1 = 4 \sin^{2} x,

(2 \cos x \sin x) (\frac{ 1}{\cos^{2} x - \sin^{2} x }-2)+ 1 = 4 \sin^{2} x.

Operamos el paréntesis y tenemos en cuenta que $1 = \cos^{2} x + \sin^{2} x$ (identidad pitagórica),

(2 \cos x \sin x) (\frac{ 1-2\cos^{2} x +2  \sin^{2} x }{\cos^{2} x - \sin^{2} x})+ 1 = 4 \sin^{2} x,

(2 \cos x \sin x)(\frac{ \cos^{2} x+ \sin^{2} x-2\cos^{2} x +2  \sin^{2} x }{\cos^{2} x - \sin^{2} x}) +1 = 4 \sin^{2} x,

(2 \cos x \sin x)(\frac{ + 3\sin^{2} x-\cos^{2} x}{\cos^{2} x - \sin^{2} x})+1 = 4 \sin^{2} x.

Pasamos el $1$ al otro miembro y volvemos a utilizar la identidad pitagórica

(2 \cos x \sin x)(\frac{  3\sin^{2} x-\cos^{2} x}{\cos^{2} x - \sin^{2} x}) = 4 \sin^{2} x -1,

(2 \cos x \sin x)(\frac{  3\sin^{2} x-\cos^{2} x}{\cos^{2} x - \sin^{2} x}) = 4 \sin^{2} x -\cos^{2} x - \sin^{2} x,

(2 \cos x \sin x)(\frac{  3\sin^{2} x-\cos^{2} x}{\cos^{2} x - \sin^{2} x}) = 3 \sin^{2} x -\cos^{2} x.

En este punto identificamos un factor común en ambos miembros: 3\sin^{2} x-\cos^{2} x. Por tanto, tenemos

(2 \cos x \sin x)(\frac{  3\sin^{2} x-\cos^{2} x}{\cos^{2} x - \sin^{2} x}) - 3 \sin^{2} x -\cos^{2} x =0,

( 3\sin^{2} x-\cos^{2} x)(\frac{2 \cos x \sin x}{\cos^{2} x - \sin^{2} x} -1) = 0.

Quedan entonces dos ecuaciones sencillas

3\sin^{2} x-\cos^{2} x = 0, (1)

\frac{2 \cos x \sin x}{\cos^{2} x - \sin^{2} x} -1 = 0, (2)

que pasamos a resolver

(1) 3\sin^{2} x-\cos^{2} x = 0,

3 \sin^{2} x - (1 - \sin^{2} x) = 0,
4 \sin^{2} x =1,
\sin^{2} x= \frac{1}{4},
\sin x = \frac{1}{2}, - \frac{1}{2}.

(2) \frac{2 \cos x \sin x}{\cos^{2} x - \sin^{2} x} -1 =0,

\frac{ \sin 2x}{\cos 2x} =1,
\tan 2x =1.

El resto se deja al cuidado del lector.

Una ecuación trigonométrica

Vamos a resolver una ecuación trigonométrica:

\sin x + \sin 2x + \sin 3x + \sin 4x = 0.

Pero primero vamos a demostrar la siguiente identidad trigonométrica:

\sin A + \sin B = 2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}. (1)

Bastará utilizar las conocidas expresiones para el seno de la suma y de la diferencia de dos ángulos:

\sin (x+y) = \sin x \cos y + \cos x \sin y,
\sin (x-y) = \sin x \cos y - cos x \sin y.

Haciendo x +y = A y x-y = B, despejando x e y en función de A y B y sustituyendo, tendremos la expresión (1). Pasamos a resolver la ecuación pero antes agrupamos en la forma

(\sin x+ \sin 3x) +(\sin 2x + \sin 4x) = 0.

Procedemos con los cálculos a partir de (1) en cada paréntesis:

2 \sin \frac{x+3x}{2} \cos \frac{x-3x}{2} + 2 \sin \frac{2x+4x}{2}  \cos \frac{2x-4x}{2} = 0,
2 \sin 2x \cos (-x) + 2 \sin 3x + \cos (-x) = 0,
2 \cos (-x) (\sin 2x + \sin 3x) = 0,
-2 \cos x (2 \sin \frac{2x+3x}{2} \cos \frac{2x-3x}{2}) = 0,
-4 \cos x \sin \frac{5x}{2} \cos \frac{-x}{2} = 0,
4 \cos x \cos \frac{x}{2} \sin \frac{5x}{2} = 0.

Por tanto, tenemos tres ecuaciones:

\cos x =0, (2)
\cos  \frac{x}{2} =0, (3)
\sin \frac{5x}{2} = 0, (4)

cuyas resoluciones son muy sencillas.