Curso EVT. Lectura 25. Cardinales (8)

No definiremos de manera precisa lo que entendemos por cardinal pues ello precisaría de la teoría de los ordinales. Consideraremos pues un cardinal como una “clase de equivalencia” formada por conjuntos equinumerosos. La definición de las operaciones entre cardinales las haremos utilizando representantes. De esta manera si \alpha es un cardinal, escribiremos |A| =  \alpha para indicar que A pertenece al cardinal \alpha. Tampoco daremos las demostraciones de todos los teoremas.

Definición 1. Sean \alpha y \beta dos cardinales y sean A y B conjuntos disjuntos tales que |A|= \alpha y |B|= \beta. Se define la suma \alpha + \beta como el cardinal del conjunto A \cup B

Esta definición es consistente pues se prueba con facilidad que es independiente de los representantes elegidos. Podemos extender esta definición para la suma de un número arbitrario de cardinales.

Definición 2. Sea ( \alpha_{i})_{i \in I} una familia de cardinales y sea (A_{i})_{i \in I} una familia de conjuntos tales que |A_{i}| = \alpha_{i} para cada i \in I. Se define su suma \sum_{i} \alpha_{i} como el cardinal del conjunto \bigcup_{i \in I} (A_{i} \times \{ i \}).

De nuevo resulta una definición consistente pues no depende de los representantes que se elijan, además para cada i de I es cierta la igualdad |A_{i} \times \{ i \}| = |A_{i}|, siendo los conjuntos de la familia (A_{i} \times \{i \})_{i \in I} disjuntos dos a dos.

Teorema 1. Sean \alpha, \beta y \gamma tres cardinales cualesquiera. Se cumplen:
a) \alpha + \beta = \beta + \alpha.
b) Si | \emptyset | = 0, entonces \alpha+0 = 0 + \alpha = \alpha.
c) \alpha + (\beta + \gamma) = (\alpha + \beta)+ \gamma.
Definición 3. Sean \alpha y \beta dos cardinales y sean A y B conjuntos tales que |A|= \alpha y |B|= \beta. Se define el producto \alpha  \beta como el cardinal del conjunto A \times B.

Como vemos no se exige que los conjuntos sean disjuntos. Ahora bien, si uno de ellos es vacío, el producto cartesiano será vacío.

Definición4. Sea ( \alpha_{i})_{i \in I} una familia de cardinales y sea (A_{i})_{i \in I} una familia de conjuntos tales que |A_{i}| = \alpha_{i}. Se define el producto \prod_{i \in I} \alpha_{i} como el cardinal del producto cartesiano \prod_{i \in I} A_{i}.

Si ninguno de los cardinales es cero entonces ninguno de los conjuntos de la familia será vacío y el producto cartesiano no será vacío en virtud del axioma de elección.

Teorema 2. Sean \alpha, \beta y \gamma cardinales cualesquiera. Entonces
a) (\alpha  \beta) \gamma = \alpha  (\beta \gamma).
b) \alpha \beta = \beta \alpha.
c) \alpha 1 = \alpha, donde 1 es el cardinal del natural \{ 0 \}.
d) \alpha (\beta+ \gamma) = \alpha \beta + \alpha \gamma.
e) \alpha 0 = 0.
f) \sum_{i \in I} \alpha = |I| \alpha.

Señalemos en especial la propiedad (f) pues la hemos usado en la demostración de la equicardinalidad de las bases de un mismo espacio vectorial.

Definición 5. Se dice que un cardinal \alpha es menor o igual que otro cardinal \beta si podemos hallar conjuntos A y B para los que |A|= \alpha, |B| = \beta y existe una función f:A \rightarrow B inyectiva. En tal caso, escribimos \alpha \leq \beta.
Teorema 3. Si (\alpha_{i})_{i \in I} es una familia de cardinales y (A_{i})_{i \in I} es una familia de conjuntos con |A_{i}| = \alpha_{i} para cada i \in I, entonces |\bigcup_{i \in I} A_{i} | \leq \sum_{i \in I} \alpha_{i}.
Teorema 4. Sean ( \alpha_{i})_{i \in I} y ( \beta_{i})_{i \in I} dos familias de números cardinales tales que \alpha_{i} \leq \beta_{i}, para todo i \in I, entonces:

a) \sum_{i \in I} \alpha_{i} \leq \sum_{i \in I} \beta_{i}.
b) \prod_{i \in I} \alpha_{i} \leq \prod_{i \in I} \beta_{i}.

Es importante señalar que estas propiedades no se cumplen siempre si la desigualdad entre los cardinales es estricta.

Teorema 5. Sea \alpha un cardinal infinito y sea \omega el cardinal de los naturales. Entonces si \beta es un cardinal que cumple \beta \leq \omega, concluimos que \alpha + \beta = \alpha.

Prueba. Consideremos A y B tales que A \cap B = \emptyset y |A| = \alpha y |B| = \beta. Sabemos que todo conjunto infinito contiene un subconjunto numerable. Por tanto, existe C \subset A tal que |C| = \omega. Escribimos C = \{c_{1}, c_{2}, \ldots, c_{n}, \ldots \} y definimos la función f: \mathbb{N} \cup A \rightarrow A, mediante

c_{2n} si x  \in \mathbb{N}.
c_{2n-1} si x \in C.
x si x \in A-C.

Esta función es biyectiva y esto prueba que |\mathbb{N} \cup A| = |A|. Es decir, \omega+ \alpha = \alpha. Aplicando (a) del teorema 4 concluimos de la desigualdad \beta \leq \omega que \alpha+\beta \leq \alpha+\omega = \alpha \leq \alpha + \beta y en virtud del teorema de Schröder-Bernstein es \alpha+\beta = \alpha.

Podemos obtener un conocido resultado a partir de esta demostración.

Corolario 1. Si \omega es el cardinal de los naturales, entonces \omega+ \omega = \omega.

Prueba. Bastará tomar \alpha = \omega y \beta = \omega en el teorema anterior.

Teorema 6. Si \alpha es un cardinal infinito, entonces \alpha+\alpha = \alpha y \alpha \alpha = \alpha.
Teorema 7. Si \alpha y \beta son cardinales mayores que cero y alguno de ellos es infinito, entonces \alpha+\beta =  \alpha \beta = \max \{\alpha, \beta \}.
Teorema 8. Si (A_{i})_{i \in I} es una familia de conjuntos y |A_{i}|= \alpha_{i} para i \in I, entonces |\bigcup_{i \in I} A_{i} | \leq  |I | \bigcup_{i \in I} | A_{i} | \leq |I | \sum_{i \in I} \alpha_{i}.
Definición 6. Sean \alpha y \beta dos cardinales y sean A y B dos conjuntos tales que |A| =  \alpha y |B| = \beta. Definimos \alpha^{\beta} como el cardinal del conjunto A^{B} formado por todas las aplicaciones f:B \rightarrow A.
Teorema 9. Para cualesquiera cardinales \alpha, \beta, \gamma, \delta, se cumplen:
a) Si \alpha >0 y \beta \leq \gamma, entonces \alpha^{\beta} \leq \alpha^{\gamma}.
b) Si \alpha \leq \gamma, entonces \alpha^{\delta} \leq \gamma^{\delta}.

Acabamos esta colección de resultados con un teorema.

Teorema 10. Si \alpha, \beta y $\gamma$ son cardinales, entonces
a) \alpha^{\beta+\gamma} = \alpha^{\beta} \alpha^{\gamma}.
b) \alpha^{\beta \gamma} = (\alpha^{\beta})^{\gamma}.
c) (\alpha \beta)^{\gamma} = \alpha^{\gamma} \beta^{\gamma}.
Anuncios

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s