Curso EVT. Lectura 20. Cardinales (3)

Teorema 1. Sea A un conjunto. Son equivalentes:
a) Existe B \subset A, tal que B es infinito numerable.
b) El conjunto A es D-infinito.

Prueba. (a) implica (b). Supongamos que B \subset A es infinito numerable. Hallaremos pues una biyección g: \mathbb{N} \rightarrow B. Sea ahora P el conjunto de los números pares. Es claro que la restricción g_P:P \rightarrow B es una biyección de P en g(P). También la aplicación f:\mathbb{N} \rightarrow P, dada por f(n) = 2n es una biyección. Por tanto, g_P \circ f \circ g^{-1} es una aplicación inyectiva y aplica B en B-g(P). Podemos extender esta aplicación a todo A mediante h(x) = (g_P \circ f \circ g^{-1})(x), si x \in B y h(x) si x \in A-B. Es fácil probar que h es inyectiva y aplica A en (A-B) \cup g(P) \subsetneq A. Esto prueba que A es D-infinito.
(b) implica (a). Como A es D-infinito, existen H \subsetneq A y una biyección \phi:A \rightarrow H. Sea a \in A-H, entonces \phi(a) \neq a pues \phi(a) \in H. Del mismo modo \phi^{2}(a) \neq \phi(a), pues si así fuera, entonces \phi(a) =a en contra de lo supuesto. Reiterando este argumento por inducción obtenemos un subconjunto \{a, \phi(a), \phi^{2}(a), \ldots, \phi^{n}(a), \ldots \} que resulta numerable.

Teorema 2. Un conjunto A es infinito si y sólo si contiene un subconjunto infinito numerable.

Prueba. Supongamos que B \subset A y B es infinito numerable. En ese caso, por el teorema anterior resulta que es D-infinito y, por tanto es infinito. Supongamos que A es infinito . Sea 2^{A} el conjunto de las partes de A. El axioma de elección nos garantiza la existencia de una función de elección f:2^{A}-\{\emptyset\} \rightarrow A. Con ella vamos a formar una sucesión a_n mediante a_n = f(A), si n=1, a_n=f(A-\{a_1,\ldots, a_{n-1}\}) si n \geq 2. Esta sucesión está bien formada ya que al ser A infinito, se tiene que A-\{a_1, \ldots, a_{n-1}\} es no vacío para cualquier n \geq 2 y como f es una función de elección resulta que f(X) \in X para cada X no vacío. Así resultará que a_n \neq a_m, si n \neq m. El conjunto B=\{a_n : n \in \mathbb{N} \} es numerable y está incluido en A.

Llegamos por fin al resultado buscado.

Teorema 3. Todo conjunto infinito es D-infinito

Prueba. Sea A infinito. Entonces existe B \subset A, tal que B es numerable (por el teorema 2) y, por tanto por el teorema 1 es D-infinito.

Cuando definimos el concepto de conjunto infinito utilizamos dos aproximaciones aparentemente diferentes. Una de ellas se basaba en la posibilidad de encontrar aplicaciones inyectivas sobre sí mismo que no eran sobreyectivas y otra se basaba en la imposibilidad de encontrar un entero positivo n tal que el conjunto fuera equipotente a \{1,2, \ldots, n\}. Hemos visto que estas dos ideas son equivalentes pero para ello hemos tenido que usar el axioma de elección. A partir de ahora, usaremos una u otra sin distinción y daremos una serie de resultados básicos sobre operaciones y cardinales.

Anuncios

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s