Curso EVT. Lectura 11. Subespacios (1)

Sea E un espacio vectorial sobre un cuerpo K. Decimos que un subconjunto F  de E, no vacío, es un subespacio de E si y sólo si la restricción de las operaciones de suma de vectores y producto por escalares al conjunto F hace de éste un espacio vectorial sobre K.

Teorema 1: Sea F un subconjunto no vacío del espacio vectorial E. Son equivalentes:a) F es un subespacio de E.

b) Para todos x,y \in F y todo \lambda \in K son x+y, \lambda x elementos de F.

c) El subconjunto F contiene a todas las combinaciones lineales finitas de sus elementos.

d) Para todos \lambda, \mu de K y para todos x,y de F es \lambda x+ \mu y un elemento de F.

Prueba: a) implica b). Como F es un subespacio de E, tenemos que es cerrado para las restricciones de las operaciones de suma de vectores y producto de escalares por vectores. En consecuencia, si x,y \in F y \lambda \in K, se sigue que x+y, \lambda x son elementos de F.

b) implica c). Haremos la prueba por inducción. Así si (x_i)_{i=1}^{n}, con n \geq 1 es una familia finita de elementos de F, resulta por (b) que \lambda_{1} x_{1} \in F y si para r \geq 1 fuera \sum_{i=1}^{r} \lambda_{i} x_{i} \in F, entonces

\sum_{i=1}^{r+1} \lambda_{i} x_{i} = \lambda_{r+1} x_{r+1} + \sum_{i=1}^{r} \lambda_{i} x_{i}.

Pero al ser \lambda_{r+1} x_{r+1} y \sum_{i=1}^{r} \lambda_{i} x_{i} elementos de F, su suma es un elemento de F.

c) implica d). Es inmediato.

d) implica a).  Sean x,y elementos de F y sean \lambda=1, \mu=-1, entonces \lambda x + \mu y = x-y es un elemento de F y F es un subgrupo de E. Si ahora hacemos \mu =0 es $\lambda x$ un elemento de F y el producto de escalares por vectores es cerrado cumpliéndose de forma inmediata las propiedades de este. En definitiva, F es un espacio vectorial sobre K con las restricciones de la suma de vectores y el producto de escalares por vectores.

Utilizando el teorema anterior podemos ver que

1. El cero es un elemento de todo subespacio de F.

2. La intersección de subespacios es un subespacio.

En efecto. Si F es un subespacio entonces es no vacío y tomando x \in F y \lambda =0 es \lambda x = 0x= 0 un elemento de F. Si (F_i)_{i \in I} es una familia de subespacios de E, entonces su intersección es no vacía pues el cero pertenece a todos ellos. Además si x,y \in \cap_{i \in I} F_i y \lambda, \mu \in K, se sigue que x,y \in F_i para todo i \in I, de donde \lambda x+ \mu y \in F_i, para todo i \in I y la intersección es un subespacio por (d) del teorema anterior.

En todo espacio vectorial no trivial hay al menos dos subespacios: el propio espacio y el subconjunto \{0\}. Por ello podemos dar la siguiente

Definición: Sea E un K-espacio vectorial y sea A un subconjunto no vacío de E. La clase de los subespacios que incluyen a A se denota por \mathcal{L}(A).

Esta clase es no vacía pues E \in \mathcal{A}. Además la intersección de todos los elementos de \mathcal{A} será un subespacio, pero no cualquier subespacio es un subespacio muy especial.

Teorema 2: Sea E un K-espacio vectorial y sea A un subconjunto no vacío de E. La intersección de todos los subespacios que incluyen a A es la envoltura lineal de A. En símbolos: \cap_{F \in \mathcal{L}(A)} F = L(A).

Prueba: Sea \mathcal{L}(A) = \{H_i : i \in I \} la familia de todos los subespacios de E que incluyen a A. Sea C su intersección. Evidentemente, C es no vacío pues contiene a A y además es un subespacio como ya hemos probado. Si x depende linealmente de A, entonces x es combinación lineal de elementos de A y por ende de elementos de C por lo que pertenece a C al ser este un subespacio (Ver teorema 1). Por tanto, si denotamos L(A) a la envoltura lineal de A es

L(A) \subset C.

Recíprocamente, probaremos que L(A) es un subespacio vectorial de E. En efecto, sean x,y elementos de L(A). Hallaremos familias finitas (x_i)_i, (y_j)_j de elementos de A tales que x = \sum_{i} a_i x_i, y= \sum_{j} b_j y_j. En consecuencia, si \lambda \in K, podemos escribir

x+y = \sum_{i,j}( a_i x_i+b_j y_j), \lambda x = \lambda \sum_{i} a_i x_i = \sum_{i} (\lambda a_i) x_i.

Pero esto significa que x+y \in L(A) y \lambda x \in L(A), por lo que L(A) es un subespacio. Evidentemente, de A \subset L(A) se sigue que L(A) \in \mathcal{L}(A) y, en consecuencia

C = \cap_{i \in I} H_i \subset L(A).

Esto termina la demostración. El siguiente resultado es consecuencia inmediata del teorema 2.

Corolario: Un subconjunto A no vacío es un subespacio si y sólo si coincide con su envoltura lineal.

 

Anuncios

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s