Curioso ejercicio de límites superior e inferior

Sabemos que los números racionales de la recta real forman un conjunto numerable. Por ello existe una enumeración en la forma \mathbb{Q} = \{x_{1}, x_{2}, \ldots, x_{n}, \ldots \}. Es importante saber que tal enumeración no implica una ordenación x_{1} < x_{2}< \ldots <x_{n} < \ldots . Tan sólo es el resultado de una aplicación biyectiva f: \mathbb{N} \rightarrow \mathbb{Q}. El siguiente ejercicio es una cuestión de límites superior e inferior de conjuntos pero en su resolución se ha tenido en cuenta este hecho. Se trata de considerar la sucesión de intervalos de la recta real dada por

A_{n} =(x_{n}-1, x_{n}+1), n=1,2, \ldots,

donde x_{n} es el enésimo racional de una enumeración de los racionales. Se nos pide el límite superior e inferior de dicha sucesión.

Supongamos que x pertenece al límite inferior de la sucesión (A_{n})_{n}, entonces x pertenece a todos los elementos de la sucesión, excepto quizás a un número finito de ellos. Es decir, hallaremos un n_{0} tal que x \in A_{n} si n \geq n_{0}. Teniendo en cuenta la definición de la sucesión, esto significa que

x_{n}-1 < x < x_{n}+1 si n \geq n_{0}.

De manera equivalente

|x-x_{n}| <1, para todo n \geq n_{0}.

Ahora es cuando hay que tener cuidado con lo que significa considerar la enumeración de los racionales de n_{0} en adelante. La primera consecuencia de la desigualdad anterior es que

|x_{n}-x_{n_{0}}| = |x_{n}-x+x-x_{n_{0}}| \leq |x_{n}-x|+|x-x_{n_{0}}| <2,

si n es mayor que n_{0}. Lo que nos lleva a que \{x_{n_{0}}, x_{n_{0}+1}, \ldots, x_{m}, \ldots \} \subset (x_{n_{0}}-2, x_{n_{0}}+2). Esto es, todos los racionales, menos un número finito de ellos se hallan en un entorno de radio 2 del racional x_{0}. Pero esto es absurdo pues sabemos que hay una infinidad de racionales en cualquier intervalo no vacío de la recta real. Así pues, \lim \inf A_{n} = \emptyset. Veamos ahora el caso del límite superior. Si x pertenece a \lim \sup A_{n} entonces se hallará en una infinidad de A_{n}. Por ejemplo,  podemos ver que cualquier x real que cumpla

\frac{1}{n}-1 < x < \frac{1}{n}+1, para todo n,

pertenece a \lim \sup A_{n} pues se halla en una infinidad de conjuntos de la forma (x_{n}-1, x_{n}+1), con x_{n} racional. El lector puede comprobar con la siguiente figura que (0,1) \subset \lim \sup A_{n}.

Imagen

Es fácil ver que “trasladando” esta argumentación podemos “cubrir” toda la recta real. Por ejemplo, si sumamos \frac{1}{2}, resulta

\frac{1}{2}+\frac{1}{n}-1 <x < \frac{1}{2} + \frac{1}{n}+1, para todo n,

Luego es (\frac{1}{2}, \frac{3}{2}) \subset \lim \sup A_{n}. Por tanto, \lim \sup A_{n} = \mathbb{R}.

Anuncios

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s