Un caso de convergencia de series de funciones indicadoras

En el caso de una sucesión de subconjuntos disjuntos (A_{n})_{n} de un conjunto X podemos garantizar la igualdad:

\chi_{\cup_{n=1}^{\infty} A_{n}} = \sum_{n=1}^{\infty} \chi_{A_{n}}.

Debemos demostrar que para cada x \in X, la serie
\sum_{n=1}^{\infty} \chi_{A_{n}}(x).
converge a \chi_{\cup_{n=1}^{\infty} A_{n}}(x). Sabemos que
\chi_{\cup_{n=1}^{\infty} A_{n}}(x) = \sup \{ \chi_{A_{n}}(x) : n \in \mathbb{N} \}.
Si x pertenece a \cup_{n=1}^{\infty} A_{n}, entonces x pertenece a uno y sólo uno de los conjuntos A_{n} (ya que la sucesión es disjunta). Sea x \in A_{r}. Entonces
\chi_{A_{k}}(x) = 0, \quad \text{si} \quad k \neq r,
pero
\chi_{A_{r}}(x) = 1
Por tanto,
\sup \{ \chi_{A_{n}}(x) : n \in \mathbb{N} \}= \sup \{0,1 \} = 1.
Por otro lado,
\sum_{k=1}^{r-1} \chi_{A_{k}} (x) = 0,
mientras que
\sum_{k=1}^{s} \chi_{A_{k}} (x) = 1, \quad \text{si} \quad s \geq r.
En consecuencia,
\sum_{n=1}^{\infty} \chi_{A_{n}} (x) = \lim_{n} \sum_{k=1}^{n}\chi_{A_{k}}(x) = 1.
Para acabar, si x \notin \cup_{n=1}^{\infty} A_{n}, entonces x \notin A_{n} para todo n y de aquí
\sup \{ \chi_{A_{n}}(x) : n \in \mathbb{N} \}= \sup \{0\} = 0,
y también
\sum_{k=1}^{n} \chi_{A_{k}} (x) = 0, \quad \text{para todo} \quad n.
Por ello
\sum_{n=1}^{\infty} \chi_{A_{n}} (x) = \lim_{n} \sum_{k=1}^{n}\chi_{A_{k}}(x) = 0.
Esto termina la demostración.

Anuncios

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s