Sucesiones disjuntas de conjuntos y convergencia.

Una sucesión (A_{n})_{n} de subconjuntos de un conjunto X, se dice que es convergente si coinciden sus límites inferior y superior. Recordemos que tales límites se pueden definir mediante operaciones conjuntistas:

\lim \inf A_{n} = \cup_{n=1}^{\infty}(\cap_{k=n}^{\infty} A_{k}),

\lim \sup A_{n} = \cap_{n=1}^{\infty}(\cap_{k=n}^{\infty}A_{k}).

 Vamos a probar que cuando la sucesión está formada por conjuntos disjuntos converge y lo hace al conjunto vacío.

Sea (A_{n})_{n} una sucesión disjunta de partes de X. Definimos la sucesión
D_{n} =\cup_{k=n}^{\infty} A_{k}.
Sabemos que esta sucesión D_{n} es decreciente por su misma construcción y que \lim \sup A_{n} = \lim D_{n}= \cap_{n=1}^{\infty} D_{n}. Probaremos que esta intersección es vacía. Supongamos que x \in \cap_{n=1}^{\infty} D_{n}, entonces x \in D_{1} y hallaremos i \geq 1, tal que x \in A_{i}, pero también x \in D_{i+1}, lo que implica que existe A_{j} con j > i para el que x \in A_{j}. Esto contradice el carácter disjunto de la sucesión (A_{n})_{n} y por tanto, la intersección es vacía. Es decir,
\lim \sup A_{n} = \cap_{n=1}^{\infty} D_{n} = \emptyset
Como \lim \inf A_{n} \subset \lim \sup A_{n}, también es \lim \inf A_{n} = \emptyset. Al coincidir límite superior e inferior, la sucesión disjunta es convergente al vacío.

Anuncios

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s